Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} - 39 x^{13} - 121 x^{12} + 357 x^{11} + 1119 x^{10} + 5065 x^{9} + 6173 x^{8} - 10817 x^{7} - 49851 x^{6} - 198713 x^{5} - 195407 x^{4} - 317749 x^{3} + 123563 x^{2} + 2092986 x + 129097 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15231185783695887615175635001=17^{14}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{8} a^{14} + \frac{3}{8} a^{13} + \frac{3}{8} a^{12} + \frac{3}{8} a^{11} + \frac{1}{8} a^{10} - \frac{3}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{3}{8} a^{2} + \frac{3}{8} a - \frac{1}{8}$, $\frac{1}{36869566498355527306336282189738338865336712} a^{15} + \frac{102631348626142179425301961108715443986971}{2836120499873502100487406322287564528102824} a^{14} + \frac{6728065198791399522645831334219671335401199}{36869566498355527306336282189738338865336712} a^{13} - \frac{9160615406477888632690802539853009026149945}{36869566498355527306336282189738338865336712} a^{12} - \frac{16799582784974172154736345285679207095765875}{36869566498355527306336282189738338865336712} a^{11} + \frac{12640927500826479857064680796515017580541561}{36869566498355527306336282189738338865336712} a^{10} - \frac{12413575118986603606850943121074920145027379}{36869566498355527306336282189738338865336712} a^{9} - \frac{11578793530380602064718186637082629584795337}{36869566498355527306336282189738338865336712} a^{8} + \frac{7248152793825818492157469043584407911251753}{36869566498355527306336282189738338865336712} a^{7} - \frac{613681037876541062596402158233207174163805}{2836120499873502100487406322287564528102824} a^{6} - \frac{11740188888185024864107858644644686066014491}{36869566498355527306336282189738338865336712} a^{5} - \frac{1158563062805578480545551708494144244098305}{2836120499873502100487406322287564528102824} a^{4} - \frac{9320256127421992656833324469765916307726791}{36869566498355527306336282189738338865336712} a^{3} + \frac{14559586858490780850526653711929856172013247}{36869566498355527306336282189738338865336712} a^{2} - \frac{2359055246680035658163983510599151572592949}{36869566498355527306336282189738338865336712} a + \frac{2799355293577423139363742844890993268854079}{9217391624588881826584070547434584716334178}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69740717.6846 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n817 |
| Character table for t16n817 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||