Normalized defining polynomial
\( x^{16} - 4 x^{15} + 24 x^{14} - 109 x^{13} - 70 x^{12} + 997 x^{11} - 8796 x^{10} + 33984 x^{9} - 56320 x^{8} + 31671 x^{7} + 527680 x^{6} - 1308864 x^{5} + 2302820 x^{4} - 286790 x^{3} - 4367181 x^{2} + 4418113 x - 1248497 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15231185783695887615175635001=17^{14}\cdot 67^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{271} a^{14} + \frac{71}{271} a^{13} - \frac{71}{271} a^{12} - \frac{14}{271} a^{11} - \frac{36}{271} a^{10} - \frac{77}{271} a^{9} + \frac{63}{271} a^{8} - \frac{44}{271} a^{7} - \frac{36}{271} a^{5} + \frac{53}{271} a^{4} - \frac{24}{271} a^{3} - \frac{41}{271} a^{2} + \frac{105}{271} a$, $\frac{1}{464444063719306478478837218677674691473001181491} a^{15} + \frac{210431667765694510200462722130566214074073132}{464444063719306478478837218677674691473001181491} a^{14} + \frac{110901224007194568605849103873204737127396653770}{464444063719306478478837218677674691473001181491} a^{13} + \frac{76132706391773030550929073883107838477621971792}{464444063719306478478837218677674691473001181491} a^{12} - \frac{127313926400855982160434537586971701922755220956}{464444063719306478478837218677674691473001181491} a^{11} + \frac{75867397353004769111273053290430672637586253158}{464444063719306478478837218677674691473001181491} a^{10} + \frac{63722077006767516381932793469715405646857233628}{464444063719306478478837218677674691473001181491} a^{9} - \frac{210362025307830487974586701317073550489223994512}{464444063719306478478837218677674691473001181491} a^{8} + \frac{15647870853319401087552491414580668023467173675}{464444063719306478478837218677674691473001181491} a^{7} - \frac{117162194272237692409483513493147846120409601172}{464444063719306478478837218677674691473001181491} a^{6} - \frac{44071127589690279117918983642770115496953995364}{464444063719306478478837218677674691473001181491} a^{5} - \frac{165809199637924685441831440907102710646210977692}{464444063719306478478837218677674691473001181491} a^{4} + \frac{197970301261943355208899265426808782070401252054}{464444063719306478478837218677674691473001181491} a^{3} + \frac{229407833504487778421554649375185059152849834752}{464444063719306478478837218677674691473001181491} a^{2} - \frac{181108743482934459044146976591472999224298439058}{464444063719306478478837218677674691473001181491} a - \frac{546283951218398348794698338580208721205994094}{1713815733281573721324122578146401075546129821}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55015087.6883 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 67 | Data not computed | ||||||