Normalized defining polynomial
\( x^{16} - x^{15} - 10 x^{14} + 6 x^{13} + 48 x^{12} - 47 x^{11} - 41 x^{10} + 57 x^{9} - 84 x^{8} + 154 x^{7} - 8 x^{6} - 238 x^{5} + 240 x^{4} - 36 x^{3} - 111 x^{2} + 100 x - 29 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151945230934814453125=5^{12}\cdot 11^{4}\cdot 349^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 349$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} + \frac{2}{11} a^{13} - \frac{5}{11} a^{12} - \frac{2}{11} a^{10} + \frac{2}{11} a^{9} + \frac{4}{11} a^{6} + \frac{1}{11} a^{5} + \frac{2}{11} a^{4} - \frac{2}{11} a^{3} + \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{3523771507619} a^{15} - \frac{43062589555}{3523771507619} a^{14} - \frac{820293771991}{3523771507619} a^{13} - \frac{1111151784687}{3523771507619} a^{12} + \frac{790656181434}{3523771507619} a^{11} + \frac{255499776178}{3523771507619} a^{10} - \frac{340218625589}{3523771507619} a^{9} - \frac{27911156021}{320342864329} a^{8} + \frac{250422410924}{3523771507619} a^{7} - \frac{1165510672086}{3523771507619} a^{6} + \frac{879550151330}{3523771507619} a^{5} - \frac{1037138157889}{3523771507619} a^{4} - \frac{703962717450}{3523771507619} a^{3} + \frac{996961440325}{3523771507619} a^{2} - \frac{80543476753}{3523771507619} a - \frac{1545729736532}{3523771507619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13080.2427727 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 35 conjugacy class representatives for t16n972 |
| Character table for t16n972 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 8.4.26393125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | $16$ | R | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 349 | Data not computed | ||||||