Normalized defining polynomial
\( x^{16} - 8 x^{14} - 8 x^{13} + 28 x^{12} + 24 x^{11} - 20 x^{10} + 10 x^{8} - 112 x^{7} - 56 x^{6} + 40 x^{5} + 56 x^{4} + 64 x^{3} + 16 x^{2} - 8 x - 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149587343098087735296=2^{48}\cdot 3^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{5}{13} a^{11} + \frac{4}{13} a^{10} - \frac{6}{13} a^{9} - \frac{1}{13} a^{8} + \frac{5}{13} a^{7} + \frac{1}{13} a^{6} + \frac{5}{13} a^{5} + \frac{5}{13} a^{4} - \frac{3}{13} a^{3} + \frac{3}{13} a^{2} - \frac{2}{13}$, $\frac{1}{65} a^{13} - \frac{2}{65} a^{12} + \frac{2}{65} a^{11} - \frac{7}{65} a^{10} + \frac{4}{13} a^{9} - \frac{24}{65} a^{8} + \frac{29}{65} a^{7} + \frac{8}{65} a^{6} + \frac{4}{13} a^{5} - \frac{1}{65} a^{4} + \frac{7}{65} a^{3} - \frac{6}{13} a^{2} + \frac{11}{65} a - \frac{19}{65}$, $\frac{1}{65} a^{14} - \frac{2}{65} a^{12} - \frac{3}{65} a^{11} + \frac{6}{65} a^{10} + \frac{16}{65} a^{9} - \frac{19}{65} a^{8} + \frac{1}{65} a^{7} - \frac{29}{65} a^{6} - \frac{2}{5} a^{5} + \frac{1}{13} a^{4} - \frac{16}{65} a^{3} + \frac{16}{65} a^{2} + \frac{3}{65} a + \frac{27}{65}$, $\frac{1}{1515722195} a^{15} - \frac{3324158}{1515722195} a^{14} - \frac{8131048}{1515722195} a^{13} + \frac{12686}{1126931} a^{12} + \frac{479495218}{1515722195} a^{11} - \frac{75598895}{303144439} a^{10} + \frac{668613533}{1515722195} a^{9} + \frac{47359357}{1515722195} a^{8} + \frac{267149249}{1515722195} a^{7} - \frac{34055214}{116594015} a^{6} + \frac{35744041}{116594015} a^{5} + \frac{94904648}{303144439} a^{4} + \frac{107461437}{1515722195} a^{3} - \frac{58188614}{303144439} a^{2} - \frac{161431493}{1515722195} a - \frac{305042432}{1515722195}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20519.3606285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_4$ (as 16T43):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2^2:D_4$ |
| Character table for $C_2^2:D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), 4.2.9216.1, 4.2.1024.1, 4.4.27648.1 x2, 4.4.13824.1 x2, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.3057647616.1, 8.4.339738624.2, 8.4.764411904.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||