Properties

Label 16.8.14620212588...0625.1
Degree $16$
Signature $[8, 4]$
Discriminant $5^{14}\cdot 11^{10}\cdot 31^{4}$
Root discriminant $43.18$
Ramified primes $5, 11, 31$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 16T1161

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3509, 24079, -32549, 1936, 17028, -12056, 6204, -462, -1722, 574, -259, 178, -32, -7, 14, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 14*x^14 - 7*x^13 - 32*x^12 + 178*x^11 - 259*x^10 + 574*x^9 - 1722*x^8 - 462*x^7 + 6204*x^6 - 12056*x^5 + 17028*x^4 + 1936*x^3 - 32549*x^2 + 24079*x - 3509)
 
gp: K = bnfinit(x^16 - 7*x^15 + 14*x^14 - 7*x^13 - 32*x^12 + 178*x^11 - 259*x^10 + 574*x^9 - 1722*x^8 - 462*x^7 + 6204*x^6 - 12056*x^5 + 17028*x^4 + 1936*x^3 - 32549*x^2 + 24079*x - 3509, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 14 x^{14} - 7 x^{13} - 32 x^{12} + 178 x^{11} - 259 x^{10} + 574 x^{9} - 1722 x^{8} - 462 x^{7} + 6204 x^{6} - 12056 x^{5} + 17028 x^{4} + 1936 x^{3} - 32549 x^{2} + 24079 x - 3509 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(146202125884644293212890625=5^{14}\cdot 11^{10}\cdot 31^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $43.18$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 31$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{4}{11} a^{11} + \frac{3}{11} a^{10} + \frac{4}{11} a^{9} + \frac{1}{11} a^{8} + \frac{2}{11} a^{7} + \frac{5}{11} a^{6} + \frac{2}{11} a^{5} + \frac{5}{11} a^{4}$, $\frac{1}{11} a^{13} - \frac{2}{11} a^{11} + \frac{3}{11} a^{10} - \frac{4}{11} a^{9} - \frac{2}{11} a^{8} - \frac{3}{11} a^{7} + \frac{4}{11} a^{6} - \frac{3}{11} a^{5} + \frac{2}{11} a^{4}$, $\frac{1}{209} a^{14} - \frac{6}{209} a^{13} - \frac{7}{209} a^{12} - \frac{2}{11} a^{11} + \frac{73}{209} a^{10} - \frac{53}{209} a^{9} + \frac{37}{209} a^{8} - \frac{4}{11} a^{7} + \frac{3}{209} a^{6} + \frac{54}{209} a^{5} + \frac{5}{11} a^{4} - \frac{2}{19} a^{3} + \frac{7}{19} a^{2} + \frac{4}{19} a - \frac{1}{19}$, $\frac{1}{1521938510954923867824145369} a^{15} + \frac{1314722846540405846788874}{1521938510954923867824145369} a^{14} + \frac{7523723909064354409005673}{1521938510954923867824145369} a^{13} - \frac{31283223268431109659308785}{1521938510954923867824145369} a^{12} - \frac{462453540797013920634083356}{1521938510954923867824145369} a^{11} - \frac{341932160573347448760713875}{1521938510954923867824145369} a^{10} + \frac{189081256450117232308782977}{1521938510954923867824145369} a^{9} - \frac{514007516665244502658554704}{1521938510954923867824145369} a^{8} - \frac{695112070828500641908134658}{1521938510954923867824145369} a^{7} - \frac{98139169862321498691613683}{1521938510954923867824145369} a^{6} + \frac{524886753968322959284991813}{1521938510954923867824145369} a^{5} - \frac{115502521784961085012203708}{1521938510954923867824145369} a^{4} + \frac{42862928064244362148261540}{138358046450447624347649579} a^{3} - \frac{40592800472313826433973877}{138358046450447624347649579} a^{2} - \frac{33633681145379735804582915}{138358046450447624347649579} a - \frac{11901840120784389172696871}{138358046450447624347649579}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9537582.38618 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1161:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 43 conjugacy class representatives for t16n1161
Character table for t16n1161 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.15125.1, 8.4.78009078125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
31Data not computed