Normalized defining polynomial
\( x^{16} - 4 x^{15} - 11 x^{14} + 54 x^{13} + 61 x^{12} - 356 x^{11} - 296 x^{10} + 1862 x^{9} + 322 x^{8} - 5454 x^{7} - 257 x^{6} + 9729 x^{5} + 2302 x^{4} - 9193 x^{3} - 3093 x^{2} + 1673 x - 149 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14578339124454047265625=5^{8}\cdot 29^{6}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{20880444690494917538790655997} a^{15} - \frac{2924030787664579991564823553}{20880444690494917538790655997} a^{14} - \frac{1752406002469756673435614349}{20880444690494917538790655997} a^{13} - \frac{6770742060633999475932057123}{20880444690494917538790655997} a^{12} + \frac{5010340869947293531016929487}{20880444690494917538790655997} a^{11} - \frac{8254367583671768752475305117}{20880444690494917538790655997} a^{10} - \frac{1572867667551330714677019971}{20880444690494917538790655997} a^{9} - \frac{2676486569792842452119077770}{20880444690494917538790655997} a^{8} + \frac{185456185033608904964100832}{20880444690494917538790655997} a^{7} + \frac{8101689153381292889053981328}{20880444690494917538790655997} a^{6} - \frac{9847274953920214584299662520}{20880444690494917538790655997} a^{5} + \frac{8795457944166798351647555831}{20880444690494917538790655997} a^{4} - \frac{4297530373159696249307629616}{20880444690494917538790655997} a^{3} - \frac{10120938280757984262325981295}{20880444690494917538790655997} a^{2} - \frac{1023914163424894950062007437}{20880444690494917538790655997} a - \frac{4043668749576153158798563680}{20880444690494917538790655997}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81979.8417891 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T211):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.725.1, 4.4.2225.1, 8.4.120740793125.2, 8.4.15243125.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |