Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} - 7 x^{13} - 58 x^{12} - 61 x^{11} - 148 x^{10} + 398 x^{9} - 144 x^{8} + 993 x^{7} + 42 x^{6} - 1306 x^{5} - 618 x^{4} - 747 x^{3} + 2436 x^{2} - 281 x - 499 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1451032136813877197265625=5^{12}\cdot 29^{8}\cdot 109^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{9} + \frac{1}{5} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{12} - \frac{1}{3} a^{11} + \frac{4}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{3} a^{8} + \frac{1}{15} a^{7} - \frac{1}{15} a^{6} + \frac{1}{3} a^{5} - \frac{1}{15} a^{4} + \frac{1}{15} a^{3} + \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{45} a^{14} + \frac{1}{15} a^{12} + \frac{14}{45} a^{11} - \frac{4}{9} a^{10} - \frac{8}{45} a^{9} + \frac{11}{45} a^{8} + \frac{1}{3} a^{7} - \frac{17}{45} a^{6} - \frac{11}{45} a^{5} + \frac{1}{3} a^{4} - \frac{8}{45} a^{3} + \frac{16}{45} a^{2} - \frac{7}{45}$, $\frac{1}{13679835119995169064825} a^{15} - \frac{59820864717063698207}{13679835119995169064825} a^{14} - \frac{95963572976475868184}{4559945039998389688275} a^{13} - \frac{27122587993794318970}{547193404799806762593} a^{12} + \frac{1239376261622716391854}{4559945039998389688275} a^{11} - \frac{1818379119046819186738}{13679835119995169064825} a^{10} + \frac{361287913036444786289}{911989007999677937655} a^{9} + \frac{3356999590226903030393}{13679835119995169064825} a^{8} - \frac{5878799304662405488772}{13679835119995169064825} a^{7} - \frac{1073585993284096288481}{2735967023999033812965} a^{6} + \frac{1755824265709694408767}{13679835119995169064825} a^{5} + \frac{4840474101923418945262}{13679835119995169064825} a^{4} - \frac{921386676558863273897}{2735967023999033812965} a^{3} - \frac{4331182143464294182157}{13679835119995169064825} a^{2} - \frac{2168954057804408855242}{13679835119995169064825} a - \frac{8112911626774018066}{27414499238467272675}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 463367.25398 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.C_2\wr C_2^2$ (as 16T400):
| A solvable group of order 128 |
| The 20 conjugacy class representatives for $C_2.C_2\wr C_2^2$ |
| Character table for $C_2.C_2\wr C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |