Normalized defining polynomial
\( x^{16} - 30 x^{14} + 367 x^{12} - 2637 x^{10} + 10547 x^{8} - 19670 x^{6} + 14277 x^{4} - 2912 x^{2} + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142661082295126092995678329=13^{8}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{26} a^{8} - \frac{1}{26} a^{6} - \frac{1}{2} a^{5} - \frac{5}{26} a^{4} + \frac{1}{26} a^{2} - \frac{6}{13}$, $\frac{1}{26} a^{9} - \frac{1}{26} a^{7} - \frac{1}{2} a^{6} - \frac{5}{26} a^{5} + \frac{1}{26} a^{3} - \frac{6}{13} a$, $\frac{1}{26} a^{10} - \frac{3}{13} a^{6} + \frac{9}{26} a^{4} - \frac{1}{2} a^{3} - \frac{11}{26} a^{2} - \frac{1}{2} a - \frac{6}{13}$, $\frac{1}{26} a^{11} - \frac{3}{13} a^{7} + \frac{9}{26} a^{5} - \frac{1}{2} a^{4} - \frac{11}{26} a^{3} - \frac{1}{2} a^{2} - \frac{6}{13} a$, $\frac{1}{338} a^{12} + \frac{2}{169} a^{10} + \frac{3}{169} a^{8} - \frac{27}{338} a^{6} - \frac{1}{2} a^{5} - \frac{113}{338} a^{4} - \frac{1}{2} a^{3} - \frac{61}{169} a^{2} + \frac{21}{169}$, $\frac{1}{1352} a^{13} - \frac{11}{676} a^{11} + \frac{19}{1352} a^{9} - \frac{53}{1352} a^{7} - \frac{581}{1352} a^{5} - \frac{165}{676} a^{3} - \frac{1}{2} a^{2} - \frac{647}{1352} a - \frac{1}{2}$, $\frac{1}{345344064} a^{14} - \frac{45239}{172672032} a^{12} - \frac{3551953}{345344064} a^{10} - \frac{235889}{26564928} a^{8} - \frac{17824541}{345344064} a^{6} + \frac{854747}{4427488} a^{4} + \frac{103711}{681152} a^{2} - \frac{1}{2} a - \frac{1532897}{21584004}$, $\frac{1}{2762752512} a^{15} - \frac{1}{690688128} a^{14} + \frac{465625}{1381376256} a^{13} - \frac{465625}{345344064} a^{12} - \frac{12747505}{2762752512} a^{11} + \frac{12747505}{690688128} a^{10} + \frac{42911203}{2762752512} a^{9} + \frac{10218653}{690688128} a^{8} + \frac{26136943}{212519424} a^{7} - \frac{3658927}{53129856} a^{6} + \frac{168968687}{460458752} a^{5} + \frac{16985809}{115114688} a^{4} + \frac{37961719}{920917504} a^{3} + \frac{94862921}{230229376} a^{2} + \frac{24393451}{172672032} a - \frac{21072835}{43168008}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31553758.4088 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{689}) \), 4.4.8957.1 x2, 4.4.36517.1 x2, \(\Q(\sqrt{13}, \sqrt{53})\), 8.4.11944081475573.2 x2, 8.8.225360027841.1, 8.4.225360027841.2 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53 | Data not computed | ||||||