Normalized defining polynomial
\( x^{16} - 8 x^{14} - 8 x^{13} + 28 x^{12} + 32 x^{11} - 12 x^{10} - 80 x^{9} - 37 x^{8} + 24 x^{7} + 208 x^{6} - 88 x^{5} - 206 x^{4} + 136 x^{3} + 20 x^{2} - 16 x - 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1425696652737330020352=2^{50}\cdot 3^{8}\cdot 193\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{5555721678428} a^{15} + \frac{327564169565}{2777860839214} a^{14} - \frac{493258260461}{5555721678428} a^{13} - \frac{123067437737}{2777860839214} a^{12} + \frac{307227866639}{5555721678428} a^{11} + \frac{356407019395}{1388930419607} a^{10} - \frac{748537808211}{5555721678428} a^{9} - \frac{34984823426}{1388930419607} a^{8} - \frac{571324425618}{1388930419607} a^{7} - \frac{654923623594}{1388930419607} a^{6} + \frac{497166095453}{1388930419607} a^{5} - \frac{194000307958}{1388930419607} a^{4} + \frac{232311378401}{2777860839214} a^{3} - \frac{405604193720}{1388930419607} a^{2} + \frac{740980153113}{2777860839214} a - \frac{322148010484}{1388930419607}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125590.485375 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 220 conjugacy class representatives for t16n1769 are not computed |
| Character table for t16n1769 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 8.6.2717908992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.25.71 | $x^{8} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 16 x + 14$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ |
| 2.8.25.71 | $x^{8} + 4 x^{6} + 2 x^{4} + 4 x^{2} + 16 x + 14$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ | |
| 3 | Data not computed | ||||||
| 193 | Data not computed | ||||||