Normalized defining polynomial
\( x^{16} - 4 x^{15} - 35 x^{14} + 55 x^{13} - 1461 x^{12} + 2750 x^{11} + 13565 x^{10} + 5257 x^{9} + 376993 x^{8} - 1009787 x^{7} + 1488111 x^{6} - 10705746 x^{5} - 3090174 x^{4} + 6621394 x^{3} + 36211563 x^{2} + 120137644 x + 12813683 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1422570703415873252968445947073=17^{15}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{177677985040423621638976100085345708519140086151398625231398746299} a^{15} - \frac{53616293084848152439738034088593545566901353583462524143411770364}{177677985040423621638976100085345708519140086151398625231398746299} a^{14} - \frac{28987922929830684853456583469713025631432794001360618679730829903}{177677985040423621638976100085345708519140086151398625231398746299} a^{13} - \frac{41039971077449980451696215825784808926154752570896960531547201719}{177677985040423621638976100085345708519140086151398625231398746299} a^{12} - \frac{64056059014584994527345844262448142177960133945894501260129831955}{177677985040423621638976100085345708519140086151398625231398746299} a^{11} - \frac{38635201448262749626867737177248602151889124029045579660574522237}{177677985040423621638976100085345708519140086151398625231398746299} a^{10} - \frac{76674224472231219295068417604295954295052133221347233398505771167}{177677985040423621638976100085345708519140086151398625231398746299} a^{9} - \frac{4058391959483289068833572478506588517573906625585726339238353392}{177677985040423621638976100085345708519140086151398625231398746299} a^{8} - \frac{63521383714914559192074184090231443533698625609811786040383581938}{177677985040423621638976100085345708519140086151398625231398746299} a^{7} + \frac{57622299458239456035493835741531918921409994170738972247449254737}{177677985040423621638976100085345708519140086151398625231398746299} a^{6} + \frac{16827411170309923719847082522748046408833573157532734414416634366}{177677985040423621638976100085345708519140086151398625231398746299} a^{5} + \frac{768749420851467384419608751967594390076214907535886438296391095}{2651910224483934651328001493811129977897613226140277988528339497} a^{4} - \frac{1063557555087521625569038584984829428997429770349423802373003522}{2651910224483934651328001493811129977897613226140277988528339497} a^{3} + \frac{432228374547900623847754081919551696764376533592347430278336465}{1759187970697263580583921783023224836823169169815827972588106399} a^{2} + \frac{42378649584439763622502183242879686041172585708580951946084496281}{177677985040423621638976100085345708519140086151398625231398746299} a + \frac{1071403880975658607640128727021852959740389732097467154983738340}{2651910224483934651328001493811129977897613226140277988528339497}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 551193373.441 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |