Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 63221 x^{12} + 379872 x^{11} + 2532567 x^{10} - 16145710 x^{9} + 24934043 x^{8} + 1317824 x^{7} - 1253263249 x^{6} + 3683185606 x^{5} - 7240728990 x^{4} + 8378734076 x^{3} + 25665275297 x^{2} - 29246158068 x + 8761246720 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14014641336002292789493279203934745080101945089=37^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{7} - \frac{1}{20} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{20} a^{3} - \frac{7}{20} a^{2} - \frac{1}{5} a$, $\frac{1}{1480} a^{8} - \frac{1}{370} a^{7} + \frac{59}{740} a^{6} - \frac{17}{74} a^{5} - \frac{81}{370} a^{4} - \frac{27}{148} a^{3} + \frac{567}{1480} a^{2} + \frac{63}{370} a + \frac{4}{37}$, $\frac{1}{1480} a^{9} + \frac{7}{370} a^{7} - \frac{41}{370} a^{6} - \frac{51}{370} a^{5} - \frac{43}{740} a^{4} - \frac{217}{1480} a^{3} + \frac{56}{185} a^{2} + \frac{177}{740} a + \frac{16}{37}$, $\frac{1}{14800} a^{10} - \frac{1}{2960} a^{9} + \frac{3}{14800} a^{8} + \frac{9}{7400} a^{7} + \frac{17}{7400} a^{6} - \frac{93}{7400} a^{5} - \frac{2787}{14800} a^{4} + \frac{1183}{2960} a^{3} - \frac{1229}{2960} a^{2} + \frac{197}{925} a - \frac{16}{185}$, $\frac{1}{14800} a^{11} - \frac{1}{7400} a^{9} + \frac{3}{14800} a^{8} + \frac{4}{925} a^{7} + \frac{163}{1850} a^{6} - \frac{1297}{14800} a^{5} + \frac{46}{185} a^{4} + \frac{85}{296} a^{3} + \frac{6557}{14800} a^{2} + \frac{27}{185} a + \frac{4}{37}$, $\frac{1}{118400} a^{12} + \frac{1}{59200} a^{11} + \frac{3}{118400} a^{10} + \frac{3}{14800} a^{9} + \frac{1}{23680} a^{8} + \frac{141}{59200} a^{7} - \frac{13199}{118400} a^{6} + \frac{589}{29600} a^{5} + \frac{2379}{23680} a^{4} - \frac{25589}{59200} a^{3} + \frac{56309}{118400} a^{2} + \frac{443}{5920} a + \frac{5}{37}$, $\frac{1}{592000} a^{13} + \frac{1}{592000} a^{12} + \frac{17}{592000} a^{11} + \frac{13}{592000} a^{10} - \frac{11}{592000} a^{9} - \frac{99}{592000} a^{8} + \frac{839}{592000} a^{7} + \frac{36307}{592000} a^{6} + \frac{2683}{23680} a^{5} + \frac{29303}{592000} a^{4} - \frac{47993}{592000} a^{3} + \frac{152143}{592000} a^{2} - \frac{18119}{148000} a + \frac{301}{925}$, $\frac{1}{331505023572860529560320000} a^{14} - \frac{7}{331505023572860529560320000} a^{13} + \frac{171530740123528240927}{165752511786430264780160000} a^{12} - \frac{2058368881482338891033}{331505023572860529560320000} a^{11} + \frac{160012772468927478741}{16575251178643026478016000} a^{10} + \frac{2867104166695358626869}{331505023572860529560320000} a^{9} - \frac{313509616673624345543}{41438127946607566195040000} a^{8} - \frac{5962474992584380100983}{66301004714572105912064000} a^{7} - \frac{130875415644857634788131}{1294941498331486443595000} a^{6} - \frac{65101165363612948377074277}{331505023572860529560320000} a^{5} + \frac{27844996044256109066677029}{165752511786430264780160000} a^{4} + \frac{52320959016502280156725677}{331505023572860529560320000} a^{3} + \frac{31503602043655005452016337}{66301004714572105912064000} a^{2} + \frac{41152325604487244790617787}{82876255893215132390080000} a + \frac{28607292812502122277549}{64747074916574322179750}$, $\frac{1}{505545160948612307579488000000} a^{15} + \frac{151}{101109032189722461515897600000} a^{14} + \frac{4138389964117403448243}{12638629023715307689487200000} a^{13} + \frac{264101307864223420974183}{101109032189722461515897600000} a^{12} - \frac{453653278706136638107163}{252772580474306153789744000000} a^{11} - \frac{2175529661241706396145491}{505545160948612307579488000000} a^{10} + \frac{4796745239404717805612717}{252772580474306153789744000000} a^{9} + \frac{100106022817335607677620557}{505545160948612307579488000000} a^{8} + \frac{3312111930455999417763116017}{252772580474306153789744000000} a^{7} + \frac{3942138942035052575970722891}{505545160948612307579488000000} a^{6} - \frac{8609593669018487509749550677}{63193145118576538447436000000} a^{5} + \frac{90085577815433597614293359073}{505545160948612307579488000000} a^{4} - \frac{66971376986727151625276876041}{505545160948612307579488000000} a^{3} + \frac{8938191134625478793389166959}{252772580474306153789744000000} a^{2} - \frac{9042490203925327634066388393}{63193145118576538447436000000} a + \frac{14878873779611461724745344}{49369644623887920662059375}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2479683760740000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.94352849.1, 8.8.499686183762100623329.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 41 | Data not computed | ||||||