Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 84459 x^{12} + 507300 x^{11} - 9169571 x^{10} + 41196890 x^{9} - 131779642 x^{8} + 285518672 x^{7} + 1858998781 x^{6} - 6408866240 x^{5} + 5420592940 x^{4} + 93759936 x^{3} - 1266360960 x^{2} + 115686400 x + 77696000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14014641336002292789493279203934745080101945089=37^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{40} a^{7} - \frac{1}{40} a^{6} - \frac{1}{5} a^{5} + \frac{1}{8} a^{4} - \frac{1}{40} a^{3} + \frac{2}{5} a^{2} - \frac{3}{10} a$, $\frac{1}{1480} a^{8} - \frac{1}{370} a^{7} - \frac{3}{148} a^{6} + \frac{13}{185} a^{5} + \frac{97}{740} a^{4} - \frac{283}{740} a^{3} - \frac{5}{296} a^{2} + \frac{163}{740} a + \frac{4}{37}$, $\frac{1}{1480} a^{9} - \frac{9}{1480} a^{7} - \frac{53}{1480} a^{6} + \frac{157}{740} a^{5} - \frac{69}{296} a^{4} + \frac{317}{740} a^{3} - \frac{331}{740} a^{2} + \frac{7}{37} a + \frac{16}{37}$, $\frac{1}{59200} a^{10} - \frac{1}{11840} a^{9} - \frac{1}{3700} a^{8} + \frac{47}{29600} a^{7} + \frac{55}{1184} a^{6} - \frac{43}{296} a^{5} - \frac{3439}{59200} a^{4} + \frac{21331}{59200} a^{3} + \frac{1983}{7400} a^{2} - \frac{1399}{2960} a + \frac{41}{148}$, $\frac{1}{296000} a^{11} + \frac{1}{148000} a^{10} + \frac{29}{296000} a^{9} + \frac{11}{148000} a^{8} - \frac{27}{18500} a^{7} + \frac{817}{29600} a^{6} - \frac{10679}{296000} a^{5} + \frac{10909}{148000} a^{4} + \frac{18621}{296000} a^{3} - \frac{34163}{74000} a^{2} - \frac{493}{2960} a + \frac{283}{740}$, $\frac{1}{47360000} a^{12} - \frac{3}{23680000} a^{11} - \frac{87}{47360000} a^{10} + \frac{49}{4736000} a^{9} - \frac{901}{5920000} a^{8} + \frac{349}{640000} a^{7} - \frac{2365239}{47360000} a^{6} + \frac{140149}{947200} a^{5} + \frac{157221}{1280000} a^{4} - \frac{145527}{296000} a^{3} + \frac{731679}{11840000} a^{2} + \frac{12349}{59200} a - \frac{13}{800}$, $\frac{1}{47360000} a^{13} + \frac{1}{1280000} a^{11} + \frac{9}{1480000} a^{10} + \frac{93}{11840000} a^{9} - \frac{6951}{23680000} a^{8} + \frac{88597}{47360000} a^{7} - \frac{3927}{80000} a^{6} + \frac{9449237}{47360000} a^{5} - \frac{4285189}{23680000} a^{4} + \frac{79947}{320000} a^{3} - \frac{2707103}{5920000} a^{2} - \frac{2081}{7400} a + \frac{4217}{14800}$, $\frac{1}{24279732373055897600000} a^{14} - \frac{7}{24279732373055897600000} a^{13} + \frac{189179887504219}{24279732373055897600000} a^{12} - \frac{1135079325025223}{24279732373055897600000} a^{11} - \frac{10073382571743299}{12139866186527948800000} a^{10} + \frac{55569359765082017}{12139866186527948800000} a^{9} - \frac{1239048617011442533}{4855946474611179520000} a^{8} + \frac{24101654150472589289}{24279732373055897600000} a^{7} - \frac{1379882854098193817973}{24279732373055897600000} a^{6} + \frac{4055772041262529357503}{24279732373055897600000} a^{5} - \frac{724008476219077847083}{3034966546631987200000} a^{4} + \frac{1213101406716975002921}{6069933093263974400000} a^{3} + \frac{27961324341263627807}{60699330932639744000} a^{2} + \frac{7088111984469043231}{15174832733159936000} a + \frac{14615500918034269}{151748327331599360}$, $\frac{1}{121398661865279488000000} a^{15} + \frac{70184315551633}{12139866186527948800000} a^{13} + \frac{70184315551647}{12139866186527948800000} a^{12} - \frac{94225881992231799}{121398661865279488000000} a^{11} - \frac{11361945670961149}{15174832733159936000000} a^{10} - \frac{40164563027674244907}{121398661865279488000000} a^{9} + \frac{16864477284744539917}{60699330932639744000000} a^{8} - \frac{108426507169135157007}{12139866186527948800000} a^{7} + \frac{808057290713995880003}{30349665466319872000000} a^{6} + \frac{28433124773220115662177}{121398661865279488000000} a^{5} + \frac{2359152897362313017519}{30349665466319872000000} a^{4} - \frac{2012632537233397791813}{30349665466319872000000} a^{3} - \frac{732983112907993065911}{1517483273315993600000} a^{2} - \frac{15741940037984198803}{75874163665799680000} a + \frac{855872816091566679}{3793708183289984000}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1106489458250000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.94352849.1, 8.8.499686183762100623329.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{12}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 41 | Data not computed | ||||||