Normalized defining polynomial
\( x^{16} - x^{15} + 94 x^{14} - 2156 x^{13} - 29059 x^{12} - 123760 x^{11} + 1863479 x^{10} + 41129851 x^{9} + 314500669 x^{8} - 858373597 x^{7} - 50306428611 x^{6} - 98834863124 x^{5} + 1753792080987 x^{4} + 7302425346538 x^{3} - 10440602463500 x^{2} - 127935155601144 x - 225600707201264 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14014641336002292789493279203934745080101945089=37^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} + \frac{20}{41} a^{7} + \frac{11}{41} a^{6} + \frac{14}{41} a^{5} + \frac{13}{41} a^{4} - \frac{15}{41} a^{3} + \frac{12}{41} a^{2} - \frac{9}{41} a + \frac{10}{41}$, $\frac{1}{82} a^{9} - \frac{1}{82} a^{8} - \frac{20}{41} a^{7} + \frac{29}{82} a^{6} - \frac{35}{82} a^{5} - \frac{1}{82} a^{4} + \frac{20}{41} a^{3} - \frac{15}{82} a^{2} + \frac{35}{82} a + \frac{18}{41}$, $\frac{1}{82} a^{10} - \frac{1}{82} a^{8} - \frac{31}{82} a^{7} + \frac{12}{41} a^{6} + \frac{16}{41} a^{5} - \frac{15}{82} a^{4} - \frac{1}{82} a^{3} + \frac{4}{41} a^{2} + \frac{39}{82} a + \frac{13}{41}$, $\frac{1}{82} a^{11} - \frac{16}{41} a^{7} + \frac{3}{82} a^{6} - \frac{6}{41} a^{5} + \frac{2}{41} a^{4} - \frac{11}{41} a^{3} - \frac{1}{41} a^{2} + \frac{19}{82} a + \frac{14}{41}$, $\frac{1}{82} a^{12} - \frac{13}{82} a^{7} + \frac{6}{41} a^{6} - \frac{20}{41} a^{5} - \frac{8}{41} a^{4} + \frac{5}{41} a^{3} - \frac{7}{82} a^{2} - \frac{7}{41} a - \frac{4}{41}$, $\frac{1}{82} a^{13} - \frac{1}{82} a^{8} + \frac{3}{41} a^{7} + \frac{5}{41} a^{6} - \frac{6}{41} a^{5} + \frac{1}{41} a^{4} - \frac{23}{82} a^{3} - \frac{17}{41} a^{2} - \frac{17}{41} a + \frac{19}{41}$, $\frac{1}{7052} a^{14} - \frac{3}{7052} a^{13} - \frac{15}{3526} a^{12} + \frac{7}{3526} a^{11} + \frac{11}{7052} a^{10} - \frac{21}{3526} a^{9} + \frac{61}{7052} a^{8} - \frac{3083}{7052} a^{7} + \frac{2237}{7052} a^{6} + \frac{2837}{7052} a^{5} + \frac{3293}{7052} a^{4} + \frac{612}{1763} a^{3} - \frac{1243}{7052} a^{2} + \frac{787}{1763} a + \frac{5}{41}$, $\frac{1}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{15} + \frac{21844370486067206970981643063939585513155828188265340464909601657955506180790215}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{14} - \frac{1036435301269614679867771322787195845852068354368819381555796891868703819956538607}{220230195107598179153499164788322627194222257169357707685905759682388497991764121212} a^{13} - \frac{1646308816916768733578568592006897553024023629238693216546443266737393772698263}{283072230215421824104754710524836281740645574767811963606562673113609894590956454} a^{12} - \frac{196343435893325293557838763371460672950168286722031416862425897816602057454410083}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{11} + \frac{377502152899763907593707151654523572309179368649450885006571443602865198328305589}{110115097553799089576749582394161313597111128584678853842952879841194248995882060606} a^{10} - \frac{1616634044479600963696525619081347034599886408779138179675239314570345269969754221}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{9} + \frac{3619872604026229571118404330975521451351920242660302826924986062799624786873895743}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{8} + \frac{178826099178526177202849574174113403560569864226711271419903168446876891557255402057}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{7} + \frac{4350053939385956567019687657026984208333312469197097098122642254871894275105676501}{10243264888725496704813914641317331497405686379970125938879337659645976650779726568} a^{6} + \frac{116339519112246716874315653633483210517712939053777479577947466692328061141622061921}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{5} + \frac{9972139850310777990461261293662000088842044614311040076774448453009840661945082957}{110115097553799089576749582394161313597111128584678853842952879841194248995882060606} a^{4} - \frac{8887907685032596170788236548990922002484996482516292481540261275159881705773974645}{440460390215196358306998329576645254388444514338715415371811519364776995983528242424} a^{3} - \frac{12438420598798982403062423400565646093459885263262781053501545250357595912983133909}{220230195107598179153499164788322627194222257169357707685905759682388497991764121212} a^{2} - \frac{25111481137782635566621882118983752076910383783152249729436879999309561443835596279}{110115097553799089576749582394161313597111128584678853842952879841194248995882060606} a + \frac{125502600626237615462678387124565942667804462687518530000325395364756365392880563}{1280408111090687088101739330164666437175710797496265742359917207455747081347465821}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15178902125900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.94352849.1, 8.8.499686183762100623329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 41 | Data not computed | ||||||