Normalized defining polynomial
\( x^{16} - x^{15} + 94 x^{14} - 2156 x^{13} - 39678 x^{12} - 67631 x^{11} + 1274883 x^{10} + 52941213 x^{9} + 363015846 x^{8} - 2252123415 x^{7} - 25151684794 x^{6} - 96196910865 x^{5} + 103874593488 x^{4} + 7056647500815 x^{3} + 19640886189987 x^{2} - 105017935194008 x - 265429377926851 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14014641336002292789493279203934745080101945089=37^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $765.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{524} a^{14} - \frac{41}{524} a^{13} - \frac{107}{524} a^{12} + \frac{53}{524} a^{11} + \frac{85}{524} a^{10} + \frac{31}{131} a^{9} + \frac{50}{131} a^{8} + \frac{223}{524} a^{7} + \frac{18}{131} a^{6} - \frac{111}{262} a^{5} + \frac{3}{131} a^{4} + \frac{45}{524} a^{3} - \frac{15}{262} a^{2} - \frac{71}{262} a - \frac{241}{524}$, $\frac{1}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{15} + \frac{2585575104464894343551549167227768597234325151374294331603642774601912338353733869702462249}{4650434230749553637910731366486198786772820252181168262874104629116621937544067639145924142359} a^{14} - \frac{2223242354198064260817989604576873552276048061407035048846467426797078654473177055657487296125}{18601736922998214551642925465944795147091281008724673051496418516466487750176270556583696569436} a^{13} - \frac{4212044318540461814585238115796722873606811408205930939093623351100427770845418399547606263325}{18601736922998214551642925465944795147091281008724673051496418516466487750176270556583696569436} a^{12} + \frac{50691747299289898387211019303109208737689602702282276070711252134324713908460263492197548177}{9300868461499107275821462732972397573545640504362336525748209258233243875088135278291848284718} a^{11} + \frac{2447519941059541859699811232780776709846821579096149417977335697806826300311237334067063455113}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{10} - \frac{55432860714426421263720274155542332386866003825446723268126627722918415106862881949665165639}{4650434230749553637910731366486198786772820252181168262874104629116621937544067639145924142359} a^{9} + \frac{5061091525998388284481849416413371795683679789213993733043024154222157835896645486346641504117}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{8} - \frac{16968324282883955116872076963270060954212986146408398378833560947936079533274642610956904771665}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{7} + \frac{3240330909407779683927742712031747757070343305256228998639218813990395363623414370702852353895}{9300868461499107275821462732972397573545640504362336525748209258233243875088135278291848284718} a^{6} + \frac{4676023026182388613880930341340031953860214772048747878749105270122188207167644247939666066219}{18601736922998214551642925465944795147091281008724673051496418516466487750176270556583696569436} a^{5} - \frac{15922813652074822010127671727550984441596055897854001045233849126508273914291181561440460911431}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{4} - \frac{11180273621181252422507041027354369095359003630853033238664838621055072766229925569825285331023}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a^{3} + \frac{2326908802131385681793137801975713983990070615987363329489666301570611577988179840911234162175}{9300868461499107275821462732972397573545640504362336525748209258233243875088135278291848284718} a^{2} + \frac{14946942416875850373001359524156036984021937062916089057523801197066787971128552378155543152155}{37203473845996429103285850931889590294182562017449346102992837032932975500352541113167393138872} a - \frac{461974329809573691755425576828902040491504355568514824586167600994670475084324535989829439}{361198775203848826245493698367860099943520019586886855368862495465368694178180010807450418824}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14382371380200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.94352849.1, 8.8.499686183762100623329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.2 | $x^{8} - 148$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| 41 | Data not computed | ||||||