Normalized defining polynomial
\( x^{16} - 8 x^{15} - 142 x^{14} + 1052 x^{13} + 7883 x^{12} - 51539 x^{11} - 216639 x^{10} + 1162594 x^{9} + 2984096 x^{8} - 11815071 x^{7} - 16940841 x^{6} + 54157635 x^{5} + 19776230 x^{4} - 484341650 x^{3} - 599158350 x^{2} + 1880620875 x - 791780750 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14009685799460036277781846932413291015625=3^{8}\cdot 5^{10}\cdot 7^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $322.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{1}{10} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{9} - \frac{1}{5} a^{7} - \frac{3}{10} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{4} a^{7} + \frac{1}{5} a^{6} - \frac{1}{20} a^{5} - \frac{9}{20} a^{4} - \frac{1}{4} a^{3} + \frac{1}{20} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{200} a^{12} - \frac{1}{25} a^{10} + \frac{1}{25} a^{9} - \frac{1}{20} a^{8} + \frac{93}{200} a^{7} - \frac{11}{40} a^{6} - \frac{1}{50} a^{5} - \frac{9}{50} a^{4} - \frac{2}{5} a^{3} + \frac{3}{20} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{800} a^{13} - \frac{1}{800} a^{12} - \frac{1}{100} a^{11} - \frac{1}{200} a^{10} + \frac{1}{400} a^{9} - \frac{17}{800} a^{8} - \frac{23}{50} a^{7} + \frac{271}{800} a^{6} + \frac{37}{200} a^{5} + \frac{3}{25} a^{4} - \frac{9}{80} a^{3} + \frac{61}{160} a^{2} - \frac{13}{32} a + \frac{3}{16}$, $\frac{1}{11200} a^{14} - \frac{1}{2800} a^{13} + \frac{19}{11200} a^{12} - \frac{1}{80} a^{11} - \frac{89}{5600} a^{10} + \frac{249}{11200} a^{9} - \frac{11}{1600} a^{8} + \frac{721}{1600} a^{7} + \frac{167}{448} a^{6} - \frac{1191}{2800} a^{5} + \frac{1979}{5600} a^{4} - \frac{877}{2240} a^{3} + \frac{11}{280} a^{2} - \frac{59}{448} a - \frac{1}{224}$, $\frac{1}{782350129526870146668800811462212600173166356652800} a^{15} - \frac{13722922474657154532895304097884660657368747641}{782350129526870146668800811462212600173166356652800} a^{14} + \frac{370226730705715066272728101305860306465113150091}{782350129526870146668800811462212600173166356652800} a^{13} - \frac{286846929381148911055399368769202993946630537843}{156470025905374029333760162292442520034633271330560} a^{12} - \frac{1006160861409563857938067356982679849501828008943}{78235012952687014666880081146221260017316635665280} a^{11} - \frac{33190185549322053061154597245119240563699473091997}{782350129526870146668800811462212600173166356652800} a^{10} - \frac{15000115382349535991747131296475566180344135897833}{391175064763435073334400405731106300086583178326400} a^{9} + \frac{1318637407038838478321320928718379699333956851591}{27941076054531076666742886123650450006184512737600} a^{8} - \frac{15099494719328099280206293043260527312659885476097}{39117506476343507333440040573110630008658317832640} a^{7} + \frac{7143516692871682060100976607029558257799853170445}{31294005181074805866752032458488504006926654266112} a^{6} - \frac{34855745784148715157032355241852093794873905833531}{78235012952687014666880081146221260017316635665280} a^{5} + \frac{349332004607290009054034751196217923808002768435441}{782350129526870146668800811462212600173166356652800} a^{4} - \frac{800659549592803976284766105847316110414605060629}{4470572168724972266678861779784072000989522038016} a^{3} + \frac{1992972788217924017280515686634254021953753873255}{4470572168724972266678861779784072000989522038016} a^{2} + \frac{2128227011122265117072572483860121498694273492609}{31294005181074805866752032458488504006926654266112} a - \frac{311069866832387374641467293645115834878249277145}{680304460458147953625044183880184869715796831872}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 115530061950000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{4305}) \), \(\Q(\sqrt{105}) \), 4.4.16885645.1, 4.4.3101445.1, \(\Q(\sqrt{41}, \sqrt{105})\), 8.8.577378139308700625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||