Normalized defining polynomial
\( x^{16} - 114 x^{14} - 246 x^{13} + 2908 x^{12} + 9471 x^{11} + 13226 x^{10} - 48585 x^{9} - 246448 x^{8} + 2069598 x^{7} - 3949556 x^{6} - 11279715 x^{5} - 48085035 x^{4} + 153830565 x^{3} + 73641130 x^{2} - 36260400 x + 3013600 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14009685799460036277781846932413291015625=3^{8}\cdot 5^{10}\cdot 7^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $322.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{60} a^{11} - \frac{1}{30} a^{10} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{17}{60} a^{7} + \frac{13}{60} a^{6} + \frac{1}{10} a^{5} + \frac{1}{4} a^{4} - \frac{5}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{240} a^{12} - \frac{1}{240} a^{11} - \frac{1}{30} a^{10} - \frac{3}{40} a^{9} + \frac{37}{240} a^{8} + \frac{23}{60} a^{7} + \frac{97}{240} a^{6} + \frac{33}{80} a^{5} + \frac{43}{120} a^{4} + \frac{1}{6} a^{3} - \frac{7}{48} a^{2} - \frac{11}{24} a - \frac{1}{6}$, $\frac{1}{720} a^{13} + \frac{1}{720} a^{12} + \frac{1}{360} a^{11} + \frac{7}{360} a^{10} - \frac{47}{720} a^{9} - \frac{73}{360} a^{8} - \frac{211}{720} a^{7} - \frac{11}{144} a^{6} - \frac{37}{180} a^{5} + \frac{13}{90} a^{4} + \frac{23}{48} a^{3} - \frac{1}{2} a^{2} - \frac{7}{36} a - \frac{1}{9}$, $\frac{1}{2142720} a^{14} + \frac{433}{1071360} a^{13} - \frac{773}{714240} a^{12} + \frac{437}{1071360} a^{11} + \frac{629}{714240} a^{10} - \frac{245389}{2142720} a^{9} + \frac{139771}{714240} a^{8} - \frac{332173}{1071360} a^{7} + \frac{779659}{2142720} a^{6} + \frac{486743}{1071360} a^{5} - \frac{424387}{2142720} a^{4} + \frac{15245}{47616} a^{3} + \frac{45937}{214272} a^{2} + \frac{4381}{26784} a - \frac{269}{13392}$, $\frac{1}{3516997061593045480152404186202155235655296614400} a^{15} + \frac{661427499424378035980676777909360573579601}{3516997061593045480152404186202155235655296614400} a^{14} - \frac{1716123092812652778558142891972850421323080913}{3516997061593045480152404186202155235655296614400} a^{13} - \frac{4923393013274050224169413370148382720473266199}{3516997061593045480152404186202155235655296614400} a^{12} + \frac{170518858191348997026033236575324877441955377}{95053974637649877841956869897355546909602611200} a^{11} - \frac{187192926408503699609703767350863551327392303}{35169970615930454801524041862021552356552966144} a^{10} + \frac{157678427807777394230672689625102642214346616903}{1758498530796522740076202093101077617827648307200} a^{9} - \frac{292842150184479946164100812618599426752286098139}{3516997061593045480152404186202155235655296614400} a^{8} - \frac{167273665641763072480509338190791019487449544163}{390777451288116164461378242911350581739477401600} a^{7} - \frac{205455903828383091775349739593357266169110694063}{1172332353864348493384134728734051745218432204800} a^{6} - \frac{312520692942099490177803336913826933645515668637}{703399412318609096030480837240431047131059322880} a^{5} - \frac{53873671558195172039850636226132310716227382717}{175849853079652274007620209310107761782764830720} a^{4} + \frac{6270027766552973346162785529995423970464019971}{22690303623180938581628414104530033778421268480} a^{3} - \frac{61404229493546223271559647481477934027952866233}{351699706159304548015240418620215523565529661440} a^{2} - \frac{1947924924699360891715673052428334393886240003}{8792492653982613700381010465505388089138241536} a + \frac{145439841879812360669078364782010627738112633}{4396246326991306850190505232752694044569120768}$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1427890714800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 38 conjugacy class representatives for t16n813 |
| Character table for t16n813 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{4305}) \), \(\Q(\sqrt{105}) \), 4.4.16885645.1, 4.4.3101445.1, \(\Q(\sqrt{41}, \sqrt{105})\), 8.8.577378139308700625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||