Normalized defining polynomial
\( x^{16} + 92 x^{14} - 516032 x^{12} - 108139328 x^{10} + 48177644922 x^{8} + 11094212289568 x^{6} - 234046949464216 x^{4} - 9806891286708672 x^{2} + 119044425692577032 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1398629213800614161925350535491003636252672=2^{59}\cdot 113^{6}\cdot 1039^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $430.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 113, 1039$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2078} a^{10} + \frac{46}{1039} a^{8} - \frac{344}{1039} a^{6} - \frac{104}{1039} a^{4} + \frac{203}{1039} a^{2}$, $\frac{1}{2078} a^{11} + \frac{46}{1039} a^{9} - \frac{344}{1039} a^{7} - \frac{104}{1039} a^{5} + \frac{203}{1039} a^{3}$, $\frac{1}{4318084} a^{12} + \frac{23}{1079521} a^{10} - \frac{129008}{1079521} a^{8} - \frac{46807}{1079521} a^{6} + \frac{390867}{2159042} a^{4} + \frac{212}{1039} a^{2}$, $\frac{1}{8636168} a^{13} - \frac{993}{4318084} a^{11} + \frac{725917}{4318084} a^{9} - \frac{384456}{1079521} a^{7} + \frac{606979}{4318084} a^{5} + \frac{9}{2078} a^{3} - \frac{1}{2} a$, $\frac{1}{9105011497661378862590704053993233151684323617706994776} a^{14} - \frac{193289421505172181537607322866565686606052751727}{2276252874415344715647676013498308287921080904426748694} a^{12} + \frac{968070581923893981911100398882696472389444303253293}{4552505748830689431295352026996616575842161808853497388} a^{10} - \frac{188694827509746923140583668104248932776774369533550108}{1138126437207672357823838006749154143960540452213374347} a^{8} + \frac{830769357869122379619365821942682667847301013651234179}{4552505748830689431295352026996616575842161808853497388} a^{6} - \frac{21753437457205279851361511916350629666281106257419}{99582328918336893676072972854068960010546894060143} a^{4} + \frac{104149310206502886335289679436172030085459754609}{2108576743217913051851400772655935630637181587414} a^{2} - \frac{3770132985644215266400370922998640553727118}{8979774388315488224089708333642524000430901}$, $\frac{1}{9105011497661378862590704053993233151684323617706994776} a^{15} + \frac{281130685588267799775271094861705068894379786799}{9105011497661378862590704053993233151684323617706994776} a^{13} - \frac{39418885541899924166560042370487784110958177448879}{2276252874415344715647676013498308287921080904426748694} a^{11} + \frac{10546541814271201868071974925043681485527995061203887}{4552505748830689431295352026996616575842161808853497388} a^{9} - \frac{790540602912049580905798448961738109777195555090439389}{4552505748830689431295352026996616575842161808853497388} a^{7} - \frac{31021895641155284848629554989493552301115069760319}{398329315673347574704291891416275840042187576240572} a^{5} + \frac{56640870379709868929594456405743238496948990463}{1054288371608956525925700386327967815318590793707} a^{3} + \frac{1439508417027057691288966487645242892976665}{17959548776630976448179416667285048000861802} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 862186582842000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n942 |
| Character table for t16n942 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7232.1, 8.8.26778533888.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.30.21 | $x^{8} + 8 x^{7} + 30$ | $8$ | $1$ | $30$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]$ |
| 2.8.29.76 | $x^{8} + 4 x^{6} + 12 x^{4} + 14$ | $8$ | $1$ | $29$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4, 19/4]$ | |
| $113$ | 113.4.2.2 | $x^{4} - 113 x^{2} + 127690$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1039 | Data not computed | ||||||