Normalized defining polynomial
\( x^{16} - 3 x^{15} - 8 x^{14} + 126 x^{13} - 514 x^{12} + 811 x^{11} + 1001 x^{10} - 9174 x^{9} + 20365 x^{8} - 13699 x^{7} - 20001 x^{6} + 53713 x^{5} - 48412 x^{4} + 11089 x^{3} + 17631 x^{2} - 12722 x + 409 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13967711378414469438602033=17^{15}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{101} a^{14} - \frac{39}{101} a^{13} + \frac{38}{101} a^{12} + \frac{8}{101} a^{11} + \frac{13}{101} a^{10} - \frac{17}{101} a^{9} + \frac{18}{101} a^{8} + \frac{33}{101} a^{7} - \frac{15}{101} a^{6} + \frac{1}{101} a^{5} + \frac{30}{101} a^{4} - \frac{33}{101} a^{3} + \frac{7}{101} a^{2} + \frac{45}{101}$, $\frac{1}{337525567380184211763964079681087567} a^{15} - \frac{647180613728654044075109235047375}{337525567380184211763964079681087567} a^{14} - \frac{68843981923014449516391190541084255}{337525567380184211763964079681087567} a^{13} + \frac{77529193373236901273365485299680250}{337525567380184211763964079681087567} a^{12} + \frac{40063111951315037195811837586153115}{337525567380184211763964079681087567} a^{11} - \frac{110052661721686328284567769060431775}{337525567380184211763964079681087567} a^{10} - \frac{73248132303868723933723318055509052}{337525567380184211763964079681087567} a^{9} - \frac{77178774742281179616519021709759854}{337525567380184211763964079681087567} a^{8} - \frac{126801683294809692247879743931179123}{337525567380184211763964079681087567} a^{7} + \frac{62596030482770424531873813632408765}{337525567380184211763964079681087567} a^{6} + \frac{121711436454707792606185484806653988}{337525567380184211763964079681087567} a^{5} + \frac{90175351844972649799328758792479914}{337525567380184211763964079681087567} a^{4} - \frac{144539859372673989314162005189743701}{337525567380184211763964079681087567} a^{3} - \frac{165324393653652701810095077461377507}{337525567380184211763964079681087567} a^{2} - \frac{31254735111469271224681093749885120}{337525567380184211763964079681087567} a + \frac{70301888154481670662106569804734059}{337525567380184211763964079681087567}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3120523.02485 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $47$ | 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 47.4.2.2 | $x^{4} - 47 x^{2} + 28717$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 47.4.0.1 | $x^{4} - x + 39$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |