Normalized defining polynomial
\( x^{16} + 18 x^{14} - 192 x^{13} - 700 x^{12} - 3300 x^{11} - 1766 x^{10} + 74908 x^{9} + 271449 x^{8} + 1112084 x^{7} + 982078 x^{6} - 4576660 x^{5} - 16548400 x^{4} - 54882132 x^{3} - 49423048 x^{2} + 73520356 x + 63951713 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138864899053729330143760914317312=2^{32}\cdot 17^{8}\cdot 16673^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 16673$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{13} + \frac{1}{24} a^{12} - \frac{1}{16} a^{11} - \frac{11}{48} a^{10} + \frac{1}{6} a^{9} + \frac{3}{16} a^{8} + \frac{5}{16} a^{7} - \frac{5}{16} a^{6} + \frac{7}{24} a^{5} + \frac{11}{48} a^{4} - \frac{13}{48} a^{3} + \frac{1}{24} a^{2} - \frac{5}{16} a - \frac{23}{48}$, $\frac{1}{528738796738168423985919174782456514955886915655192144} a^{15} + \frac{278139515162665840061552054449877418658291946670673}{37767056909869173141851369627318322496849065403942296} a^{14} + \frac{28096894779033680698693892195222605346919271535291465}{528738796738168423985919174782456514955886915655192144} a^{13} + \frac{3819628129640126626752043714740538166863853880572373}{176246265579389474661973058260818838318628971885064048} a^{12} - \frac{1079220962432445788228633540348406221863522362923581}{5395293844267024734550195661045474642407009343420328} a^{11} - \frac{17953774802032413472109348712653100732345158037594613}{528738796738168423985919174782456514955886915655192144} a^{10} + \frac{3635963061811171287930217747891219549693454303694911}{176246265579389474661973058260818838318628971885064048} a^{9} + \frac{6442816616784107261907793558424544717834828988932669}{88123132789694737330986529130409419159314485942532024} a^{8} - \frac{160100878671098947091323709275078910015053518575647}{44061566394847368665493264565204709579657242971266012} a^{7} - \frac{191957806338240926535080759978188707244055596889661283}{528738796738168423985919174782456514955886915655192144} a^{6} + \frac{50520457206451279504515849147533505392197852011211301}{528738796738168423985919174782456514955886915655192144} a^{5} + \frac{26550891674640952915573619218148326754091797364517603}{66092349592271052998239896847807064369485864456899018} a^{4} - \frac{245512318661124228570171318351159881318994946425149479}{528738796738168423985919174782456514955886915655192144} a^{3} - \frac{12275886029225944671343664750085305727611745676161683}{176246265579389474661973058260818838318628971885064048} a^{2} + \frac{12086466339698505675513468636353751562445014620761543}{264369398369084211992959587391228257477943457827596072} a + \frac{9256530096028013307256791271628840829264613647605287}{25178037939912782094567579751545548331232710269294864}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4334304947.13 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 74 conjugacy class representatives for t16n1461 are not computed |
| Character table for t16n1461 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{34}) \), 4.4.9248.1 x2, 4.4.4352.1 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 8.8.5473632256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 16673 | Data not computed | ||||||