Normalized defining polynomial
\( x^{16} - x^{15} + 94 x^{14} + 6208 x^{13} - 246687 x^{12} - 145121 x^{11} - 10993465 x^{10} - 1114369992 x^{9} + 15068632831 x^{8} - 1048567964 x^{7} - 404880849047 x^{6} + 40524218769108 x^{5} - 238409158886151 x^{4} - 1546925722655262 x^{3} + 7605509253401021 x^{2} + 28165196463819167 x + 20617776290452519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13854815685101981032101054249860279864869741101695057=41^{15}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1814.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{329} a^{14} + \frac{102}{329} a^{13} - \frac{121}{329} a^{12} + \frac{50}{329} a^{11} - \frac{57}{329} a^{10} - \frac{90}{329} a^{9} + \frac{156}{329} a^{8} - \frac{65}{329} a^{7} - \frac{88}{329} a^{6} - \frac{29}{329} a^{5} - \frac{6}{329} a^{4} + \frac{153}{329} a^{3} + \frac{137}{329} a^{2} - \frac{16}{329} a + \frac{111}{329}$, $\frac{1}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{15} + \frac{2154473693511957125704084449845757217873860067649316987138371976632734892935258421857191561108771916020518022518688}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{14} - \frac{795127055883799704678513490872904001884233263198011141115040871498464709018690452154402582896544924831437937910804776}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{13} + \frac{542146018670907586021812557819669619636844716631733531504511212026267703110792755967051018172420906142008756418542210}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{12} - \frac{494561952202547497760412046916351256292096034807213074299832788728955210756462428681991358554236942704379757617374280}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{11} - \frac{691805837946008291406226395861731033665113758854187032716244015336316321680071266091076066782036918610939371012355705}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{10} - \frac{98481937192753788183572080233647675006100323521851193207976771805171959410339098129019886273757782311309904718692002}{255709931135987319511882642635328137188062274743258055584884743959848054274306088326449123496529003425785906624027017} a^{9} - \frac{812380180145173775455282319017679324899377224727335531874067317266976127112135365039522603848453102103226107192587388}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{8} + \frac{126945177115517610936265370378559478914206394790165219170161581352589185489617868087014773067771994577435869363285481}{255709931135987319511882642635328137188062274743258055584884743959848054274306088326449123496529003425785906624027017} a^{7} + \frac{79294115294179972850424774057228504832223998119565638078939857952529168339757708260957556039974271057923464068218262}{255709931135987319511882642635328137188062274743258055584884743959848054274306088326449123496529003425785906624027017} a^{6} - \frac{351323779586169879301984418829695345022792332958160492452369570315122737760167185408041581861024005378182701246658407}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{5} - \frac{259519894230959062535035036912170579039975935965807440590269571861821251402281273414826439772349207702746728669289024}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{4} - \frac{833819853821176642775134980700770191443421657678841429503656966498539570355681261350806909870665199046257616510380391}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{3} - \frac{858383118382873876009971635283922788711523114564086236026743556301434663071713528539338548128405827412317338709718785}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a^{2} - \frac{789443092253196996695390376390987581096027372440829570236169895511856949180836270047742131375004137411530926135955735}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119} a + \frac{624341134908758441383582433475744563087026527840250194935564842018440892126521109097468625278235342470040046861699872}{1789969517951911236583178498447296960316435923202806389094193207718936379920142618285143864475703023980501346368189119}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8256970769730000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2993}) \), 4.4.26811440657.2, 8.8.2151528076860770946805457.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 73 | Data not computed | ||||||