Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 433123 x^{12} + 2599284 x^{11} - 64876517 x^{10} + 300555100 x^{9} - 39325421 x^{8} - 1617435648 x^{7} + 99309516517 x^{6} - 291033786670 x^{5} - 420732794356 x^{4} + 1324048078030 x^{3} - 8192417846781 x^{2} + 7482245749632 x + 11036826128683 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13854815685101981032101054249860279864869741101695057=41^{15}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1814.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{11178576285121553636506496093396995194727603876598} a^{14} - \frac{7}{11178576285121553636506496093396995194727603876598} a^{13} + \frac{1672245240108862996163132375139845963624440399161}{11178576285121553636506496093396995194727603876598} a^{12} + \frac{1145104844468375659527701842557919412980961481723}{11178576285121553636506496093396995194727603876598} a^{11} + \frac{2755835533264338466651755632586015172417771546549}{11178576285121553636506496093396995194727603876598} a^{10} - \frac{55723456185102999831970184017514225837862916077}{11178576285121553636506496093396995194727603876598} a^{9} + \frac{772652130794901313613445256888323284736572891370}{5589288142560776818253248046698497597363801938299} a^{8} - \frac{4429299305218013891617516776261382574802433211857}{11178576285121553636506496093396995194727603876598} a^{7} - \frac{2441198799861398120691259664440251872697216706133}{11178576285121553636506496093396995194727603876598} a^{6} + \frac{3288806391644745946732195013186724221754003487163}{11178576285121553636506496093396995194727603876598} a^{5} + \frac{246322290238258299914037195369393893490285861048}{5589288142560776818253248046698497597363801938299} a^{4} - \frac{3361529398648761584612860191423977858628373375415}{11178576285121553636506496093396995194727603876598} a^{3} - \frac{4216371194057615984176125336824484585785316344829}{11178576285121553636506496093396995194727603876598} a^{2} + \frac{3604181302418250284799982384981671990520308134885}{11178576285121553636506496093396995194727603876598} a + \frac{3801776767258079598639875236647958740427375895265}{11178576285121553636506496093396995194727603876598}$, $\frac{1}{187593982179073315008912864100595558871018552294173562674} a^{15} + \frac{4195387}{93796991089536657504456432050297779435509276147086781337} a^{14} + \frac{739840974246360225304609690713164245086154380778396243}{5070107626461440946186834164880961050568068980923609802} a^{13} - \frac{23204823247776142314833800425694852365526586907823170559}{187593982179073315008912864100595558871018552294173562674} a^{12} - \frac{20186698377401272884638888486757794790691344072817454151}{187593982179073315008912864100595558871018552294173562674} a^{11} + \frac{16906618867163079939446693450423671790915377100148326086}{93796991089536657504456432050297779435509276147086781337} a^{10} - \frac{383688388681567886769196932101551183181835731725000028}{93796991089536657504456432050297779435509276147086781337} a^{9} + \frac{11611154001544884857190190356060721250138507103236068422}{93796991089536657504456432050297779435509276147086781337} a^{8} + \frac{950529840589429810519655875364337915837936492430408272}{2535053813230720473093417082440480525284034490461804901} a^{7} + \frac{74226686018008802732112121535383405890014934264293335433}{187593982179073315008912864100595558871018552294173562674} a^{6} - \frac{11489454804251680265106294302819750117780369907660778741}{187593982179073315008912864100595558871018552294173562674} a^{5} - \frac{37683810870187800548128473641355906911335749719090080336}{93796991089536657504456432050297779435509276147086781337} a^{4} - \frac{33813051857976047421717577026174086070252385360561765641}{187593982179073315008912864100595558871018552294173562674} a^{3} - \frac{79920960854916131569622562007806121924870245901821088035}{187593982179073315008912864100595558871018552294173562674} a^{2} + \frac{34131806835199793213990348905788760942033055280197460523}{93796991089536657504456432050297779435509276147086781337} a - \frac{20621604193589074800810967087865106562463585835954418419}{93796991089536657504456432050297779435509276147086781337}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1924563711160000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_8$ (as 16T104):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^3.C_8$ |
| Character table for $C_2^3.C_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2993}) \), 4.4.26811440657.2, 8.8.2151528076860770946805457.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | R | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 73 | Data not computed | ||||||