Normalized defining polynomial
\( x^{16} - 3 x^{15} - 3 x^{14} - 44 x^{13} - 4901 x^{12} + 18246 x^{11} - 116329 x^{10} + 344801 x^{9} + 8347337 x^{8} - 18669757 x^{7} - 94085134 x^{6} + 117404282 x^{5} + 283303175 x^{4} - 52518582 x^{3} - 226364881 x^{2} + 2139886400 x - 732956425 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13753742182201431148415117624283136=2^{12}\cdot 41^{14}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $136.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{2} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{7} - \frac{3}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{3}{10} a^{2} - \frac{3}{10} a$, $\frac{1}{10} a^{14} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{4} + \frac{3}{10} a^{3} + \frac{2}{5} a^{2} + \frac{3}{10} a$, $\frac{1}{2268233556870017255543056937149502010741877963279459742147277995506520111770} a^{15} - \frac{22918742220353902715937351362843184891631154604273787094175329867860747303}{2268233556870017255543056937149502010741877963279459742147277995506520111770} a^{14} - \frac{45891900170371440575306104400837382206060250820812825653546387172656417607}{1134116778435008627771528468574751005370938981639729871073638997753260055885} a^{13} + \frac{23395614146910050208149125838914533361640295017118712043798069489427558215}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{12} - \frac{41839212718310585813517915544828631438600295099707661177306959731533738177}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{11} - \frac{11868580694652776196670568455139413646765238640136423494358231131395688052}{1134116778435008627771528468574751005370938981639729871073638997753260055885} a^{10} - \frac{62475484924318466933970567158165870570541364818793747012696095946889804843}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{9} - \frac{324158694648300461635061309502783794174705170246851576397516614243255122227}{1134116778435008627771528468574751005370938981639729871073638997753260055885} a^{8} + \frac{313772497879065823177477888492308258342002973593793973436718990106435514233}{2268233556870017255543056937149502010741877963279459742147277995506520111770} a^{7} - \frac{108129753641234213833513649798709347704928753833536335247268143369032834107}{1134116778435008627771528468574751005370938981639729871073638997753260055885} a^{6} + \frac{50172703886508763681157403585189904357335563254196891371120049149834795279}{2268233556870017255543056937149502010741877963279459742147277995506520111770} a^{5} + \frac{145241313576903753229239748579753327993554220071239524864604068594398967375}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{4} + \frac{146731057979758302575106513169732879438557309199056573611666605656552582209}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{3} + \frac{151207981945753979679422918643198788879601617573161270542577707142431556781}{453646711374003451108611387429900402148375592655891948429455599101304022354} a^{2} - \frac{544574576011347734329822107921050598943281136550778319265564945963985023079}{1134116778435008627771528468574751005370938981639729871073638997753260055885} a - \frac{128625805831261341640261514246538165091540175139031653411690506047579072313}{453646711374003451108611387429900402148375592655891948429455599101304022354}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126437991657 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.C_2^2:D_4$ (as 16T209):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.C_2^2:D_4$ |
| Character table for $C_4.C_2^2:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 4.4.13448.1, 4.4.551368.1, 8.8.304006671424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 41 | Data not computed | ||||||
| $97$ | 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |