Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 24 x^{13} - 1464 x^{12} + 9608 x^{11} - 33320 x^{10} + 41032 x^{9} + 547102 x^{8} - 2982336 x^{7} + 5805312 x^{6} + 1628176 x^{5} - 37227492 x^{4} + 50197344 x^{3} + 9577888 x^{2} - 13201088 x - 8134226 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136576515395793105198700252102656=2^{56}\cdot 3^{8}\cdot 7^{6}\cdot 1567^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{1578556676307} a^{14} - \frac{141211239479}{1578556676307} a^{13} - \frac{145654990642}{1578556676307} a^{12} - \frac{50579487597}{526185558769} a^{11} - \frac{248481658910}{1578556676307} a^{10} - \frac{131688727400}{1578556676307} a^{9} - \frac{57757450259}{526185558769} a^{8} + \frac{543528990214}{1578556676307} a^{7} - \frac{25045620982}{1578556676307} a^{6} + \frac{73122917261}{526185558769} a^{5} - \frac{37874809485}{526185558769} a^{4} + \frac{461088450574}{1578556676307} a^{3} + \frac{567659642383}{1578556676307} a^{2} + \frac{256390013128}{526185558769} a + \frac{251709175161}{526185558769}$, $\frac{1}{12711744580953891006021030950983419310451971155} a^{15} - \frac{3290820058640000000689264409051261}{12711744580953891006021030950983419310451971155} a^{14} - \frac{78018928554664061518063007392543703586340489}{847449638730259400401402063398894620696798077} a^{13} - \frac{119622829838983679550157869624134330537327978}{977826506227222385078540842383339946957843935} a^{12} - \frac{602880725573938931740479672977097549443139719}{4237248193651297002007010316994473103483990385} a^{11} + \frac{390865685687925439850763187954653822638885594}{12711744580953891006021030950983419310451971155} a^{10} + \frac{782353607751304437997847268311905709245656278}{12711744580953891006021030950983419310451971155} a^{9} + \frac{639263622680066911539940870183604275395077436}{4237248193651297002007010316994473103483990385} a^{8} - \frac{356558492882357233737235939160022507487503647}{12711744580953891006021030950983419310451971155} a^{7} - \frac{4674094099869555727027429641485127834735091}{2542348916190778201204206190196683862090394231} a^{6} - \frac{4112170219095868733479922752768683507300348923}{12711744580953891006021030950983419310451971155} a^{5} - \frac{16451107335704112863348630735865694947491287}{59124393399785539562888516051085671211404517} a^{4} - \frac{1496683239870309453499289535464130144222367024}{4237248193651297002007010316994473103483990385} a^{3} + \frac{106298091428537590568614626310729121638110574}{847449638730259400401402063398894620696798077} a^{2} - \frac{5202866477667478165726160306037011808088037557}{12711744580953891006021030950983419310451971155} a - \frac{14225474666010436456623042618939180972469034}{174133487410327274055082615766896154937698235}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12528400626.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), 4.4.129024.1, 4.4.14336.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.66588770304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1567 | Data not computed | ||||||