Normalized defining polynomial
\( x^{16} - 120 x^{13} - 836 x^{12} + 4352 x^{11} - 2240 x^{10} + 40480 x^{9} - 42220 x^{8} - 1488608 x^{7} + 5984592 x^{6} - 2574120 x^{5} - 33384068 x^{4} + 92061888 x^{3} - 109532856 x^{2} + 63626096 x - 14596103 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(136576515395793105198700252102656=2^{56}\cdot 3^{8}\cdot 7^{6}\cdot 1567^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $101.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16340872867427513408666712843240196228718006821707577975} a^{15} + \frac{2728805147178320723751436949009862912963318548515456663}{16340872867427513408666712843240196228718006821707577975} a^{14} + \frac{4692900873427742759581942731012143596499328548850032219}{16340872867427513408666712843240196228718006821707577975} a^{13} - \frac{76585372054579429594749169973757605756347442439057408}{527124931207339142215055253007748265442516349087341225} a^{12} - \frac{1508536174272091710823123236263540312773846482636118677}{3268174573485502681733342568648039245743601364341515595} a^{11} - \frac{4548882749699377052416266984417923593349291074177087753}{16340872867427513408666712843240196228718006821707577975} a^{10} + \frac{4287129895492513349798459289963911187503855142061348621}{16340872867427513408666712843240196228718006821707577975} a^{9} + \frac{3787751085581213460650884699875115386174005913652650803}{16340872867427513408666712843240196228718006821707577975} a^{8} + \frac{59638680271357977706614330729004134738747555761431357}{961227815731030200509806637837658601689294518923975175} a^{7} - \frac{5341445110995871950827446663722343486885306090808790811}{16340872867427513408666712843240196228718006821707577975} a^{6} - \frac{7741049668296554560681066658305806600005342734388118501}{16340872867427513408666712843240196228718006821707577975} a^{5} + \frac{2834199108193227461067056431458860350137930453400656817}{16340872867427513408666712843240196228718006821707577975} a^{4} + \frac{4798310003123777369561543017837047295994601300220104928}{16340872867427513408666712843240196228718006821707577975} a^{3} + \frac{2209332018235087031835802024969227535918189897195312602}{16340872867427513408666712843240196228718006821707577975} a^{2} + \frac{613213127430378667429365438520449321766468549624530444}{3268174573485502681733342568648039245743601364341515595} a + \frac{5316687445563452260767800799328308533914955090912866931}{16340872867427513408666712843240196228718006821707577975}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11124092813.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{3}) \), 4.4.129024.1, 4.4.14336.1, \(\Q(\sqrt{2}, \sqrt{3})\), 8.8.66588770304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1567 | Data not computed | ||||||