Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} - 146 x^{13} + 132 x^{12} + 301 x^{11} + 933 x^{10} + 10461 x^{9} - 8365 x^{8} - 30971 x^{7} - 18709 x^{6} + 7320 x^{5} + 37149 x^{4} + 36402 x^{3} + 55167 x^{2} + 22519 x - 6323 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135845792016352372555063553=17^{15}\cdot 83^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{101027817112911349340933203396635467012540983} a^{15} + \frac{35384239452906246659506338851359451831045699}{101027817112911349340933203396635467012540983} a^{14} - \frac{48828758563064584239141036743459235213066379}{101027817112911349340933203396635467012540983} a^{13} - \frac{43459624113321872946199779191602482477212891}{101027817112911349340933203396635467012540983} a^{12} + \frac{18501582442607918721330400878531056200409319}{101027817112911349340933203396635467012540983} a^{11} + \frac{33362759455347288372156492084765579537763859}{101027817112911349340933203396635467012540983} a^{10} - \frac{4759229989427912665780967855616188913001553}{101027817112911349340933203396635467012540983} a^{9} + \frac{154393955886402745298519661984974523602041}{980852593329236401368283528122674437014961} a^{8} - \frac{6518530649822942737766677755537844172617184}{101027817112911349340933203396635467012540983} a^{7} - \frac{25545804739469019625010217054467144600856650}{101027817112911349340933203396635467012540983} a^{6} - \frac{32675501080098342506612543123426873725732135}{101027817112911349340933203396635467012540983} a^{5} - \frac{25568974840978702654816211751055430574219296}{101027817112911349340933203396635467012540983} a^{4} + \frac{32969735589270881130698693734523369097682484}{101027817112911349340933203396635467012540983} a^{3} - \frac{47163811759127315858414324857090760283610674}{101027817112911349340933203396635467012540983} a^{2} - \frac{25432151693595854740653361788466736821779807}{101027817112911349340933203396635467012540983} a + \frac{16281425127346125838647768658086953988940730}{101027817112911349340933203396635467012540983}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8827183.62748 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $83$ | 83.8.0.1 | $x^{8} - x + 8$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 83.8.4.2 | $x^{8} - 571787 x^{2} + 1044083062$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |