Normalized defining polynomial
\( x^{16} - 4 x^{15} + 12 x^{14} + 1018 x^{13} - 319433 x^{12} + 1135436 x^{11} - 25846438 x^{10} - 158581856 x^{9} + 17617749905 x^{8} - 11772785364 x^{7} + 624071995234 x^{6} + 21890648688 x^{5} - 137019728017313 x^{4} + 161198981765422 x^{3} - 3913108136820788 x^{2} + 23399467424640620 x + 168216722677285441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135369534360064007243398352896000000000000=2^{24}\cdot 5^{12}\cdot 13^{4}\cdot 29^{6}\cdot 1181^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $372.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 1181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{12} + \frac{1}{11} a^{11} - \frac{2}{11} a^{10} + \frac{3}{11} a^{9} - \frac{2}{11} a^{8} - \frac{5}{11} a^{7} - \frac{2}{11} a^{6} - \frac{4}{11} a^{5} + \frac{5}{11} a^{3} + \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{15} + \frac{1625157207567408337888709960149051436905118233362574690328925779955434450615492618278575282779610090463659992675713477619724}{69572557453647582778778892231365365274543544377387833607726254635170515040184438725343233369485626070740030521232838539138331} a^{14} - \frac{60643983595356850751138596515631116900098861684080249495078085684325935815414359061701138445954946562826930886656306555643285}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{13} + \frac{343222334589347044367113607390811067401072619835417868717260079678989802201486835124405285359030607340142630665254016743625977}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{12} - \frac{264425037159424769737193972313390583515173174507433523009228052249393468644176667801566569511457496546294010071834922919395209}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{11} - \frac{160738320548485873942719349975359139684971553595361197315927043167602266974876275461162361163888081224518787918807824741623055}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{10} + \frac{325087141130100835561295890053842699002717614088468015290681316749568623791401329492616962533736781855101477510832652276209338}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{9} - \frac{135168055914935602175620928365055113272132243772118358736623589380308432008105650104039975634870563506629474599272086659535525}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{8} + \frac{291035466099046430115695625180829924316879101010989219522589284253300551047763829301457651259153108204440472950583466691066911}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{7} + \frac{45088037483653806036860437012599682875128723945583377300494699351450210145555975342263581962342847644522827249896694753257631}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{6} + \frac{21203312285826010033826013765443189425962500018230484039923537508502134137741575840579677968748521302921446098338637232273295}{69572557453647582778778892231365365274543544377387833607726254635170515040184438725343233369485626070740030521232838539138331} a^{5} - \frac{259706821570281301920246068784248444012655197442022356860754504185793654187527353422044960519257406220929679674506334779017735}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{4} + \frac{16607576432975705672548908643086238640114943228031141914374963814037790105913471212779917697501701362996316165697087650852686}{69572557453647582778778892231365365274543544377387833607726254635170515040184438725343233369485626070740030521232838539138331} a^{3} + \frac{341791134819709047006468147153252432315147888625323520893459072320672515781847344590382714374558706786990999115287915219124929}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a^{2} - \frac{3467979602368401603382193981129237854540639375110576141178709145375266196119572201330236600568532465082569839992434041888827}{765298131990123410566567814545019018019978988151266169684988800986875665442028825978775567064341886778140335733561223930521641} a - \frac{18424090545317788590139347944790946932149812390518430196710982017124895405371860034841197587269903668568690843251215596633590}{69572557453647582778778892231365365274543544377387833607726254635170515040184438725343233369485626070740030521232838539138331}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46350745858300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, \(\Q(\zeta_{20})^+\), 4.4.58000.1, 8.8.3364000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 1181 | Data not computed | ||||||