Normalized defining polynomial
\( x^{16} + 84 x^{14} + 2636 x^{12} - 26685 x^{10} - 1228640 x^{8} - 3008 x^{6} + 118782528 x^{4} - 258515968 x^{2} + 40960000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133225631225242544609121034154723281=37^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $156.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{7} + \frac{1}{10} a^{5} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a$, $\frac{1}{20} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{7}{20} a^{2}$, $\frac{1}{200} a^{9} + \frac{1}{25} a^{7} + \frac{9}{50} a^{5} - \frac{9}{40} a^{3} - \frac{9}{50} a$, $\frac{1}{800} a^{10} - \frac{3}{200} a^{8} - \frac{1}{20} a^{7} - \frac{21}{200} a^{6} + \frac{1}{5} a^{5} - \frac{5}{32} a^{4} - \frac{1}{5} a^{3} + \frac{7}{25} a^{2} - \frac{7}{20} a$, $\frac{1}{1600} a^{11} - \frac{1}{400} a^{9} - \frac{1}{40} a^{8} - \frac{1}{80} a^{7} + \frac{1}{10} a^{6} + \frac{163}{1600} a^{5} - \frac{1}{10} a^{4} + \frac{83}{200} a^{3} + \frac{13}{40} a^{2} + \frac{8}{25} a$, $\frac{1}{1328000} a^{12} + \frac{1}{66400} a^{10} - \frac{1}{400} a^{9} - \frac{6117}{332000} a^{8} + \frac{3}{100} a^{7} - \frac{305213}{1328000} a^{6} + \frac{21}{100} a^{5} + \frac{3457}{41500} a^{4} - \frac{3}{16} a^{3} - \frac{9451}{41500} a^{2} - \frac{3}{50} a + \frac{29}{83}$, $\frac{1}{2656000} a^{13} + \frac{1}{132800} a^{11} + \frac{523}{664000} a^{9} - \frac{92733}{2656000} a^{7} + \frac{12587}{83000} a^{5} + \frac{36199}{83000} a^{3} - \frac{3613}{8300} a$, $\frac{1}{2544104228969747200000} a^{14} - \frac{1}{5312000} a^{13} + \frac{87415819467113}{636026057242436800000} a^{12} - \frac{1}{265600} a^{11} - \frac{28730652187089757}{636026057242436800000} a^{10} + \frac{2797}{1328000} a^{9} + \frac{45681637674449307011}{2544104228969747200000} a^{8} + \frac{198973}{5312000} a^{7} + \frac{30885457061514952713}{159006514310609200000} a^{6} + \frac{2353}{166000} a^{5} - \frac{9397631879222965951}{39751628577652300000} a^{4} + \frac{14063}{83000} a^{3} - \frac{3259326105356014991}{39751628577652300000} a^{2} + \frac{2119}{16600} a + \frac{320803604499671}{1987581428882615}$, $\frac{1}{20352833831757977600000} a^{15} + \frac{566351103535213}{5088208457939494400000} a^{13} - \frac{19151946505727757}{5088208457939494400000} a^{11} - \frac{1192716447863776189}{20352833831757977600000} a^{9} - \frac{5389878270903804653}{318013028621218400000} a^{7} - \frac{69688879049419802551}{318013028621218400000} a^{5} - \frac{67964440853524461191}{318013028621218400000} a^{3} - \frac{4727257325404059}{31801302862121840} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2234156590970 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\sqrt{1517}) \), \(\Q(\sqrt{37}) \), 4.4.94352849.1, 4.4.68921.1, \(\Q(\sqrt{37}, \sqrt{41})\), 8.4.365000864691088841.1 x2, 8.4.266618600943089.1 x2, 8.8.8902460114416801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | R | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |