Normalized defining polynomial
\( x^{16} - 3 x^{15} + 111 x^{14} + 58 x^{13} - 24059 x^{12} + 119471 x^{11} - 2563925 x^{10} + 3543996 x^{9} + 85092020 x^{8} - 633327585 x^{7} + 9801720863 x^{6} - 14293079195 x^{5} - 165662813949 x^{4} + 1046870527544 x^{3} - 9010729094910 x^{2} + 2296056514362 x + 105165028996897 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1331559141233168225818951099338453248=2^{8}\cdot 17^{15}\cdot 6529^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 6529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{15} - \frac{414689033884529414984407887952859953638417490028841145873329673534220723552414503173246467638374304}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{14} - \frac{321768865120284931569271292819688544916523005742127806578695909099737797481857138339430351652060722}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{13} + \frac{403339985825270172176207634580700043471446417496343087885018512435777180505987205450799262716896736}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{12} + \frac{99230036040590459979699001136720943153114732311902797441667821781672514988597957956454201619630406}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{11} + \frac{13053902656329516506913685997352789255873638279859546824300127526931880848319195090667420979802678}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{10} - \frac{210656422324470029772231503021189440212569251744576414389533493179893931883934501269835013300863078}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{9} - \frac{472945963759612235429195297380683015453660156108923649172223311655964757154777868697099687772575963}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{8} + \frac{449577929734180780489659717403555456526881004591167493433731779658010003439234684061591144638428723}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{7} - \frac{229420577895661231738833084040954527112872418256831498281513817923486533521992043500655725739341358}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{6} - \frac{131906813497493054130056964836586020919585277471438540336629555159469965762763785438876920205250414}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{5} + \frac{215961551946247035180017481110599830648361172833557678344914402574670286758636703977299024643567332}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{4} - \frac{260538589804730883250899804360263503510921831234562296743926371301872944249791289457226120729602475}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{3} + \frac{156688242010759413500599007046456733339654150064975979074046702388804696931075731242351951322652119}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a^{2} - \frac{400546287064245946378685570252694862211861612325692420085363465585911595813347487201103739668099381}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999} a + \frac{386579886088529531879285073352169576603381135562305942172241734811189959410786992276643720448912432}{1218334639322009057862905852848624471862246448038514521831543879173514871053880669466263459606256999}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118491171291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 6529 | Data not computed | ||||||