Normalized defining polynomial
\( x^{16} + 8 x^{14} - 764 x^{12} - 3096 x^{10} + 45974 x^{8} - 14920 x^{6} - 274012 x^{4} - 94248 x^{2} + 14161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13096085431976788600857793921024=2^{62}\cdot 7^{6}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{3}{8}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{5}{16} a - \frac{5}{16}$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{8} - \frac{1}{24} a^{6} + \frac{1}{24} a^{4} + \frac{7}{16} a^{2} - \frac{5}{48}$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{9} - \frac{1}{24} a^{7} + \frac{1}{24} a^{5} + \frac{7}{16} a^{3} - \frac{5}{48} a$, $\frac{1}{288} a^{12} + \frac{1}{96} a^{8} - \frac{1}{12} a^{6} - \frac{61}{288} a^{4} + \frac{17}{36} a^{2} + \frac{97}{288}$, $\frac{1}{576} a^{13} - \frac{1}{576} a^{12} - \frac{1}{96} a^{11} - \frac{1}{96} a^{10} + \frac{1}{64} a^{9} - \frac{11}{192} a^{8} + \frac{5}{48} a^{7} - \frac{1}{16} a^{6} - \frac{1}{576} a^{5} + \frac{49}{576} a^{4} + \frac{41}{288} a^{3} + \frac{121}{288} a^{2} + \frac{199}{576} a + \frac{257}{576}$, $\frac{1}{10241443345912128} a^{14} + \frac{3236412835531}{10241443345912128} a^{12} - \frac{3757550682779}{3413814448637376} a^{10} - \frac{75812418959917}{3413814448637376} a^{8} - \frac{1044572523365821}{10241443345912128} a^{6} - \frac{513848302245965}{3413814448637376} a^{4} - \frac{4213272586481515}{10241443345912128} a^{2} + \frac{21592214035469}{86062549125312}$, $\frac{1}{10241443345912128} a^{15} + \frac{3236412835531}{10241443345912128} a^{13} - \frac{3757550682779}{3413814448637376} a^{11} - \frac{75812418959917}{3413814448637376} a^{9} - \frac{1044572523365821}{10241443345912128} a^{7} + \frac{339605309913379}{3413814448637376} a^{5} - \frac{1}{4} a^{4} + \frac{907449086474549}{10241443345912128} a^{3} - \frac{1}{2} a^{2} + \frac{76576754141}{86062549125312} a + \frac{1}{4}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3112328064.01 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.121856.1, 4.4.243712.2, 8.8.950328623104.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |