Normalized defining polynomial
\( x^{16} - 3 x^{15} - 8 x^{14} + 7 x^{13} + 64 x^{12} - 22 x^{11} - 104 x^{10} + 6 x^{9} + 33 x^{8} - 48 x^{7} - 60 x^{6} - 24 x^{5} + 4 x^{4} + 39 x^{3} + 36 x^{2} + 11 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12849417078227563094777=17^{15}\cdot 67^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{16} a^{10} + \frac{5}{16} a^{9} - \frac{3}{8} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{7}{16} a^{5} + \frac{7}{16} a^{4} + \frac{5}{16} a^{2} - \frac{1}{8} a - \frac{3}{16}$, $\frac{1}{11894629616} a^{15} + \frac{156574225}{5947314808} a^{14} - \frac{360358241}{11894629616} a^{13} - \frac{19735097}{743414351} a^{12} - \frac{417697593}{11894629616} a^{11} - \frac{2726506083}{11894629616} a^{10} + \frac{424191813}{1486828702} a^{9} - \frac{2618921693}{11894629616} a^{8} + \frac{1471355747}{2973657404} a^{7} + \frac{5577675543}{11894629616} a^{6} + \frac{2610899459}{11894629616} a^{5} - \frac{306420609}{5947314808} a^{4} - \frac{1956944875}{11894629616} a^{3} - \frac{2954760943}{5947314808} a^{2} + \frac{3607176043}{11894629616} a + \frac{74597275}{2973657404}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 121589.105687 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 67 | Data not computed | ||||||