Normalized defining polynomial
\( x^{16} - 2 x^{15} + 7 x^{14} - 69 x^{13} - 2054 x^{12} + 7086 x^{11} - 25901 x^{10} + 173122 x^{9} + 421736 x^{8} - 3978878 x^{7} + 23881913 x^{6} - 69734673 x^{5} + 259011770 x^{4} - 719804582 x^{3} - 1870281267 x^{2} + 1118219916 x + 1688997251 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{7}{16} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{7}{16} a^{2} + \frac{3}{8} a - \frac{3}{16}$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{32} a^{11} + \frac{1}{16} a^{9} - \frac{15}{32} a^{8} - \frac{5}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} + \frac{15}{32} a^{4} + \frac{5}{32} a^{3} + \frac{15}{32} a^{2} - \frac{9}{32} a + \frac{3}{32}$, $\frac{1}{1472} a^{14} - \frac{9}{736} a^{13} + \frac{3}{184} a^{12} + \frac{9}{1472} a^{11} + \frac{65}{736} a^{10} + \frac{359}{1472} a^{9} + \frac{101}{1472} a^{8} + \frac{617}{1472} a^{7} - \frac{435}{1472} a^{6} + \frac{139}{1472} a^{5} - \frac{221}{736} a^{4} + \frac{85}{736} a^{3} + \frac{5}{46} a^{2} + \frac{105}{368} a + \frac{685}{1472}$, $\frac{1}{14246637699678649086359525170754873465830962340439198299491968} a^{15} + \frac{1053471404929562852762604087294381293362891349563303623451}{14246637699678649086359525170754873465830962340439198299491968} a^{14} - \frac{45322030338743656916901608974160610435870840277730701088791}{7123318849839324543179762585377436732915481170219599149745984} a^{13} - \frac{177823502274081232764444500167936109179639456704187614885275}{14246637699678649086359525170754873465830962340439198299491968} a^{12} + \frac{683065813718780854918182286561189243543233627553088827515379}{14246637699678649086359525170754873465830962340439198299491968} a^{11} - \frac{878357190756287348270027140649251831262535305524744569896871}{14246637699678649086359525170754873465830962340439198299491968} a^{10} + \frac{36206802040790167083557646629735928664394886559093107252211}{222603714057478891974367580793044897903608786569362473429562} a^{9} + \frac{430794767312570807629358341591295680613149276131186305471083}{7123318849839324543179762585377436732915481170219599149745984} a^{8} - \frac{270325645918652723251434938885460203597301796626014190622491}{7123318849839324543179762585377436732915481170219599149745984} a^{7} + \frac{204997222595232653721444368419749385641731727313855868428525}{890414856229915567897470323172179591614435146277449893718248} a^{6} + \frac{2235508086458244560453769620902502107373005611452029130610877}{14246637699678649086359525170754873465830962340439198299491968} a^{5} - \frac{1669413747728744388217222477786590664185277912957180812501501}{3561659424919662271589881292688718366457740585109799574872992} a^{4} - \frac{1555913932039969566797375805885826148270038622371002797328477}{7123318849839324543179762585377436732915481170219599149745984} a^{3} + \frac{429201350965998774106018613699311453673475509863974033109939}{1780829712459831135794940646344359183228870292554899787436496} a^{2} - \frac{1225992529778521911406401356847128389400126175541397224577619}{14246637699678649086359525170754873465830962340439198299491968} a + \frac{4615087319120070757573965802564035856493635509360463587584349}{14246637699678649086359525170754873465830962340439198299491968}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25583240827900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||