Normalized defining polynomial
\( x^{16} - x^{15} - 234 x^{14} - 475 x^{13} + 22314 x^{12} + 94770 x^{11} - 1157237 x^{10} - 5440409 x^{9} + 27762331 x^{8} + 177151636 x^{7} - 416803896 x^{6} - 2264266519 x^{5} + 3143223321 x^{4} + 4277390699 x^{3} - 10350960621 x^{2} + 35090087210 x + 118357793 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{15} - \frac{53657500123803020189389115540360491153068551499283240729657779393202403611942432}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{14} + \frac{9691515251101957337484318617065526241090719964137647132634235153960042517958854}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{13} - \frac{13670330115646152539354649504610782842812975095868179059236457133651806331636812}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{12} + \frac{243891621397386298898773792257444546935834633723586460059860925643951251832290660}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{11} - \frac{209281757370219607153853881571663712518874210678749726140766073298227209794411514}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{10} - \frac{371425932794360534065414374318116195901614258518877498179896674232763561337032155}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{9} - \frac{45025838399030309929217248131666609607630109226427490865059764607212678157430280}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{8} + \frac{55056455434950310085094902364602126104191464353145787232381829321580786681882340}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{7} + \frac{289983906504908961865503629694568827127259875821988224295663754408244456205073097}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{6} - \frac{278693307240384117663619878494493953946908406016764675822892493895755140846979591}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{5} + \frac{231258780985874981410533907899605797202557656164111745327478139023253252595031533}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{4} - \frac{306291449966983862853240045274899881868799891375025312683812563552670509152502728}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{3} + \frac{70553925840530422180544926450793314398961029256022023058499311416958424943119575}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a^{2} - \frac{302604357349686249963343488450320222961561655256128349415717905557481848174140968}{803463874843428877688260598403430517966146584550529710417492259284464647308503697} a + \frac{15315272722741943232570276113328783883541980927702377514948898058209976031793474}{34933211949714299029924373843627413824615068893501291757282272142802810752543639}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17546247672000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||