Normalized defining polynomial
\( x^{16} - 4 x^{15} - 54 x^{14} + 104 x^{13} - 2893 x^{12} + 34380 x^{11} - 39845 x^{10} - 133478 x^{9} + 1972610 x^{8} - 21748618 x^{7} + 76888174 x^{6} - 263187800 x^{5} + 548662862 x^{4} - 199051862 x^{3} + 2355411513 x^{2} + 388958406 x - 1486289473 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1274602568003244304847660149105336749401=31^{10}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4922} a^{14} + \frac{499}{4922} a^{13} - \frac{595}{2461} a^{12} - \frac{1107}{4922} a^{11} - \frac{267}{2461} a^{10} - \frac{525}{2461} a^{9} + \frac{669}{4922} a^{8} + \frac{1263}{4922} a^{7} - \frac{399}{2461} a^{6} + \frac{513}{2461} a^{5} + \frac{7}{23} a^{4} + \frac{1369}{4922} a^{3} - \frac{488}{2461} a^{2} + \frac{1206}{2461} a - \frac{142}{2461}$, $\frac{1}{127158305359792712766838754953010884669302348179278475388476532012814} a^{15} - \frac{3809514420495878503965222553222866232363999737922733481509095943}{127158305359792712766838754953010884669302348179278475388476532012814} a^{14} - \frac{2398524884210918743123934376844542953404363054375065732700665915325}{127158305359792712766838754953010884669302348179278475388476532012814} a^{13} + \frac{4337010601422568494897365316743804034281084134994275759775757972160}{63579152679896356383419377476505442334651174089639237694238266006407} a^{12} + \frac{13301774469272352220181822890353739690794017524601521081876395154611}{127158305359792712766838754953010884669302348179278475388476532012814} a^{11} + \frac{15352105996860852652362583681033533409457468313037706158393534487434}{63579152679896356383419377476505442334651174089639237694238266006407} a^{10} - \frac{1170486184480940666944533659796495743501973444748098751901386861298}{63579152679896356383419377476505442334651174089639237694238266006407} a^{9} + \frac{11064767153592412288740858923106886162886144944536030976819022790548}{63579152679896356383419377476505442334651174089639237694238266006407} a^{8} - \frac{955014243195691758447036164171834024967218897075799535342208213927}{2764310986082450277539972933761106188463094525636488595401663739409} a^{7} + \frac{9124055619542958551701896338936553481420356031204523741951912428554}{63579152679896356383419377476505442334651174089639237694238266006407} a^{6} + \frac{43698925700602090671463188521546774605814192670474086664361440008279}{127158305359792712766838754953010884669302348179278475388476532012814} a^{5} - \frac{12326340461563142543221141583859946332917324425829126050824982709174}{63579152679896356383419377476505442334651174089639237694238266006407} a^{4} + \frac{13798267801800623020789286868020791470032838302549153719081835181077}{63579152679896356383419377476505442334651174089639237694238266006407} a^{3} + \frac{20374412391579059996461603453788672804841204976368749500204565494898}{63579152679896356383419377476505442334651174089639237694238266006407} a^{2} - \frac{29660474458236856166786818336801903625986409359726921571741285861985}{127158305359792712766838754953010884669302348179278475388476532012814} a + \frac{60428375774816639819909618883216413374994848940753209677640683403109}{127158305359792712766838754953010884669302348179278475388476532012814}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25179804757400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.179859661768855001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | $16$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| 41 | Data not computed | ||||||