Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 2810 x^{13} - 239955 x^{12} + 355328 x^{11} - 6965852 x^{10} - 19367521 x^{9} + 2779261606 x^{8} - 8362892553 x^{7} + 110015690005 x^{6} - 48335042911 x^{5} - 8411107448026 x^{4} - 16949340098240 x^{3} + 78581612687548 x^{2} + 641225903327167 x + 1381515900331841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12724932380643958942597990061976243299024049161=41^{15}\cdot 67^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $761.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $41, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{59} a^{13} - \frac{26}{59} a^{12} - \frac{2}{59} a^{11} + \frac{14}{59} a^{10} + \frac{1}{59} a^{9} - \frac{16}{59} a^{8} + \frac{11}{59} a^{7} - \frac{23}{59} a^{6} - \frac{24}{59} a^{5} + \frac{9}{59} a^{4} - \frac{1}{59} a^{3} - \frac{6}{59} a^{2} - \frac{20}{59} a + \frac{14}{59}$, $\frac{1}{34783391} a^{14} - \frac{145329}{34783391} a^{13} - \frac{8558257}{34783391} a^{12} - \frac{10125122}{34783391} a^{11} - \frac{174767}{419077} a^{10} - \frac{15755008}{34783391} a^{9} - \frac{14682776}{34783391} a^{8} - \frac{58633}{34783391} a^{7} - \frac{10794573}{34783391} a^{6} + \frac{15415606}{34783391} a^{5} - \frac{16135313}{34783391} a^{4} - \frac{13793158}{34783391} a^{3} + \frac{16844986}{34783391} a^{2} + \frac{5561192}{34783391} a - \frac{14593513}{34783391}$, $\frac{1}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{15} + \frac{1912757537560973830957892575136100479924884799090080654730558498297163344737290250711677724740565}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{14} - \frac{1701742863990147440462585594979771608739620578702871806343273137868069036121137282054774273852170247439}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{13} - \frac{194315342187358501173449777535635080361084981935187357345600630824574920637063307444674389000275307514555}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{12} + \frac{58330450456145632295427743688530104591249675086110447877167855810266788130499088230908448540439784958494}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{11} - \frac{155691424191700290014465876374346889810896793383853777070109939178950237167006459736126606523713420180225}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{10} + \frac{157474157651835908098182477566302778431710774176038008659409485666260287110349907407264181440360787503115}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{9} + \frac{183295719952795647398506264142472451323392978411562808997661950778271692648941997792903233195473432394350}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{8} - \frac{10844842185531229909568406188458371872335008766989438023728812572098584342892806942715070818842629038991}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{7} + \frac{90076748542903827904392643660926360586001726284579847892307549243375717248297322721517935989786264870672}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{6} + \frac{126547177112857889281415238369233288447495176449207504834900995593997575459777006180147115052009613976554}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{5} - \frac{146552121260415323219230243901699919862960086526735973137201143612282702379465068024825992065820764341575}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{4} - \frac{119996645057482529054036439964512590191889434199292308974773565003063283438240480138125939137570075361245}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{3} - \frac{200825967824994646492256020748760826721030383761242259508661897466950947604260650955293337341124803549956}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a^{2} - \frac{46632141869788643723258835249642922880662861395969593041858380223349271385207364293597757256926659422480}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093} a - \frac{7321886529067464014320835599325203439168726713734431502917224943835557135757562440190997643264335192270}{404366465876632564416432525217138162902239646599891956796992384305929705372545063428744107506217410415093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 139906515353000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.8.3924516938243170601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 41 | Data not computed | ||||||
| 67 | Data not computed | ||||||