Normalized defining polynomial
\( x^{16} + 18 x^{14} - 2259 x^{12} - 134374 x^{10} - 11466300 x^{8} - 309207550 x^{6} + 7300822245 x^{4} - 35054114934 x^{2} + 22898045041 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1251534885791204872804259841565797642149089=61^{8}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $427.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{264} a^{10} + \frac{5}{88} a^{8} - \frac{7}{88} a^{6} - \frac{19}{88} a^{4} + \frac{15}{88} a^{2} - \frac{1}{2} a + \frac{89}{264}$, $\frac{1}{528} a^{11} - \frac{1}{528} a^{10} + \frac{5}{176} a^{9} - \frac{5}{176} a^{8} - \frac{7}{176} a^{7} - \frac{15}{176} a^{6} + \frac{25}{176} a^{5} - \frac{25}{176} a^{4} + \frac{15}{176} a^{3} + \frac{73}{176} a^{2} + \frac{89}{528} a - \frac{23}{528}$, $\frac{1}{12672} a^{12} - \frac{1}{3168} a^{10} + \frac{13}{1056} a^{8} - \frac{1}{8} a^{7} - \frac{69}{704} a^{6} + \frac{127}{1056} a^{4} + \frac{221}{3168} a^{2} - \frac{3}{8} a - \frac{2615}{12672}$, $\frac{1}{9858816} a^{13} - \frac{1}{25344} a^{12} - \frac{1357}{2464704} a^{11} - \frac{1}{576} a^{10} - \frac{3203}{821568} a^{9} + \frac{59}{2112} a^{8} - \frac{3327}{49792} a^{7} + \frac{37}{1408} a^{6} + \frac{49651}{821568} a^{5} - \frac{427}{2112} a^{4} - \frac{98419}{2464704} a^{3} + \frac{427}{6336} a^{2} - \frac{1975895}{9858816} a - \frac{6409}{25344}$, $\frac{1}{27729040566032042558402138112} a^{14} + \frac{83698859320077136330663}{27729040566032042558402138112} a^{12} + \frac{514353322381348804150979}{866532517688501329950066816} a^{10} - \frac{268479098747415229021144961}{4621506761005340426400356352} a^{8} - \frac{53921558736994723493919775}{4621506761005340426400356352} a^{6} - \frac{7917330452350223708898467}{39387841713113696815912128} a^{4} - \frac{7743626320714043472276516955}{27729040566032042558402138112} a^{2} - \frac{53322178589699268216949}{183246479774995159683072}$, $\frac{1}{21573193560372929110436863451136} a^{15} - \frac{1}{55458081132064085116804276224} a^{14} + \frac{83698859320077136330663}{21573193560372929110436863451136} a^{13} - \frac{83698859320077136330663}{55458081132064085116804276224} a^{12} - \frac{380234783237717720416332925}{674162298761654034701151982848} a^{11} - \frac{514353322381348804150979}{1733065035377002659900133632} a^{10} + \frac{466760613230707111542548095}{3595532260062154851739477241856} a^{9} + \frac{268479098747415229021144961}{9243013522010680852800712704} a^{8} - \frac{124939638350449489427812640287}{3595532260062154851739477241856} a^{7} + \frac{53921558736994723493919775}{9243013522010680852800712704} a^{6} + \frac{82253192466288330732866420447}{337081149380827017350575991424} a^{5} + \frac{7917330452350223708898467}{78775683426227393631824256} a^{4} + \frac{920549027173949563085140515749}{21573193560372929110436863451136} a^{3} + \frac{7743626320714043472276516955}{55458081132064085116804276224} a^{2} - \frac{28063657196923618487348341}{142565761264946234233430016} a - \frac{129924301185295891466123}{366492959549990319366144}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368918538667000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |