Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} + 14 x^{13} - 215 x^{12} + 744 x^{11} + 398 x^{10} - 7523 x^{9} + 4391 x^{8} + 33470 x^{7} - 27190 x^{6} - 72935 x^{5} + 57685 x^{4} + 63150 x^{3} - 50900 x^{2} - 1100 x + 25775 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(124784363598789404541015625=5^{12}\cdot 59^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{6}$, $\frac{1}{15} a^{12} + \frac{1}{15} a^{10} - \frac{1}{15} a^{9} + \frac{1}{15} a^{8} + \frac{1}{3} a^{7} + \frac{1}{15} a^{6} + \frac{1}{3} a^{5} + \frac{7}{15} a^{4} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{13} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{1}{15} a^{8} - \frac{1}{3} a^{7} - \frac{1}{15} a^{6} + \frac{1}{15} a^{5} - \frac{2}{5} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{50546090325} a^{14} - \frac{7}{50546090325} a^{13} + \frac{414537702}{16848696775} a^{12} + \frac{529507904}{10109218065} a^{11} + \frac{792958688}{10109218065} a^{10} - \frac{1971337696}{50546090325} a^{9} + \frac{3923551162}{50546090325} a^{8} + \frac{15147538469}{50546090325} a^{7} - \frac{3007023154}{10109218065} a^{6} - \frac{325114561}{3369739355} a^{5} + \frac{2326858204}{10109218065} a^{4} - \frac{173550541}{10109218065} a^{3} - \frac{30632909}{673947871} a^{2} - \frac{540517358}{2021843613} a + \frac{289844399}{2021843613}$, $\frac{1}{1899976989226425} a^{15} + \frac{18787}{1899976989226425} a^{14} + \frac{29486462837798}{1899976989226425} a^{13} - \frac{13874596721637}{633325663075475} a^{12} - \frac{18168110411011}{379995397845285} a^{11} - \frac{52199952392401}{1899976989226425} a^{10} - \frac{135131770252802}{1899976989226425} a^{9} - \frac{145295538694678}{1899976989226425} a^{8} - \frac{510711995526164}{1899976989226425} a^{7} - \frac{44160790839693}{126665132615095} a^{6} - \frac{36834270514433}{75999079569057} a^{5} + \frac{6487092288233}{379995397845285} a^{4} - \frac{36935973735704}{379995397845285} a^{3} + \frac{25375802387540}{75999079569057} a^{2} + \frac{29221254668548}{75999079569057} a - \frac{10515670300042}{25333026523019}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19039970.8352 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.435125.1, 4.2.1475.1, 4.2.7375.1, 8.6.11170692171875.1 x2, 8.4.37866753125.1 x2, 8.4.189333765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $59$ | 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 59.4.2.1 | $x^{4} + 177 x^{2} + 13924$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59.8.6.1 | $x^{8} - 59 x^{4} + 55696$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |