Normalized defining polynomial
\( x^{16} - 5 x^{15} + 8 x^{14} + 28 x^{13} - 242 x^{12} + 853 x^{11} - 1698 x^{10} + 1673 x^{9} + 390 x^{8} - 4313 x^{7} + 7914 x^{6} - 7967 x^{5} + 4509 x^{4} - 513 x^{3} - 1362 x^{2} + 724 x - 67 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(123839870900520670468352=2^{8}\cdot 13^{2}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{103} a^{13} + \frac{9}{103} a^{12} - \frac{13}{103} a^{11} + \frac{48}{103} a^{10} - \frac{2}{103} a^{9} + \frac{3}{103} a^{8} + \frac{47}{103} a^{7} - \frac{27}{103} a^{6} + \frac{47}{103} a^{5} - \frac{8}{103} a^{4} - \frac{9}{103} a^{3} - \frac{29}{103} a^{2} + \frac{24}{103} a + \frac{43}{103}$, $\frac{1}{103} a^{14} + \frac{9}{103} a^{12} - \frac{41}{103} a^{11} - \frac{22}{103} a^{10} + \frac{21}{103} a^{9} + \frac{20}{103} a^{8} - \frac{38}{103} a^{7} - \frac{19}{103} a^{6} - \frac{19}{103} a^{5} - \frac{40}{103} a^{4} - \frac{51}{103} a^{3} - \frac{24}{103} a^{2} + \frac{33}{103} a + \frac{25}{103}$, $\frac{1}{9328705580796459804823} a^{15} + \frac{31544531043298409118}{9328705580796459804823} a^{14} + \frac{32498717971875798994}{9328705580796459804823} a^{13} - \frac{3480533072374968723462}{9328705580796459804823} a^{12} + \frac{4409054289543578851845}{9328705580796459804823} a^{11} - \frac{3532668283846115710608}{9328705580796459804823} a^{10} - \frac{4433696521715939827469}{9328705580796459804823} a^{9} + \frac{1232339136799894057561}{9328705580796459804823} a^{8} - \frac{3528609709151762974705}{9328705580796459804823} a^{7} + \frac{981253411228128698}{9328705580796459804823} a^{6} + \frac{3120645263519641189831}{9328705580796459804823} a^{5} + \frac{2710290734714445648843}{9328705580796459804823} a^{4} - \frac{2474372655293035051687}{9328705580796459804823} a^{3} + \frac{2586116489477747165075}{9328705580796459804823} a^{2} + \frac{264409492131079050617}{9328705580796459804823} a - \frac{1752292990506656726789}{9328705580796459804823}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 303061.735576 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_8).D_4$ (as 16T306):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $(C_2\times C_8).D_4$ |
| Character table for $(C_2\times C_8).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17 | Data not computed | ||||||