Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 630 x^{13} - 4609 x^{12} - 33136 x^{11} + 168901 x^{10} + 1035038 x^{9} - 2476072 x^{8} - 17969440 x^{7} + 16115584 x^{6} + 185656320 x^{5} + 24797184 x^{4} - 1016004608 x^{3} - 749731840 x^{2} + 2181038080 x + 2147483648 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(123315986626517312705762123587383695257=7^{12}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $240.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{6} - \frac{1}{32} a^{5} - \frac{1}{16} a^{4} + \frac{9}{64} a^{3} + \frac{3}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} - \frac{1}{16} a^{5} - \frac{7}{128} a^{4} + \frac{3}{16} a^{3} + \frac{1}{32} a^{2} - \frac{1}{8} a$, $\frac{1}{256} a^{9} - \frac{1}{256} a^{8} - \frac{3}{128} a^{6} - \frac{11}{256} a^{5} + \frac{7}{256} a^{4} + \frac{21}{128} a^{3} - \frac{1}{8} a$, $\frac{1}{2048} a^{10} + \frac{1}{2048} a^{9} + \frac{1}{512} a^{8} + \frac{3}{1024} a^{7} - \frac{19}{2048} a^{6} + \frac{89}{2048} a^{5} - \frac{41}{1024} a^{4} + \frac{9}{64} a^{3} - \frac{9}{64} a^{2}$, $\frac{1}{4096} a^{11} + \frac{3}{4096} a^{9} + \frac{1}{2048} a^{8} + \frac{7}{4096} a^{7} + \frac{11}{1024} a^{6} - \frac{235}{4096} a^{5} - \frac{7}{2048} a^{4} - \frac{25}{128} a^{3} + \frac{23}{128} a^{2} + \frac{1}{16} a$, $\frac{1}{32768} a^{12} + \frac{3}{32768} a^{10} + \frac{17}{16384} a^{9} - \frac{121}{32768} a^{8} + \frac{27}{8192} a^{7} - \frac{1003}{32768} a^{6} - \frac{503}{16384} a^{5} + \frac{51}{1024} a^{4} + \frac{51}{1024} a^{3} + \frac{27}{128} a^{2} - \frac{1}{4} a$, $\frac{1}{262144} a^{13} - \frac{29}{262144} a^{11} + \frac{1}{131072} a^{10} - \frac{249}{262144} a^{9} - \frac{149}{65536} a^{8} - \frac{1419}{262144} a^{7} - \frac{391}{131072} a^{6} - \frac{123}{8192} a^{5} - \frac{445}{8192} a^{4} - \frac{157}{1024} a^{3} - \frac{1}{64} a^{2} + \frac{1}{4} a$, $\frac{1}{4194304} a^{14} + \frac{1}{1048576} a^{13} - \frac{61}{4194304} a^{12} - \frac{185}{2097152} a^{11} + \frac{431}{4194304} a^{10} + \frac{945}{524288} a^{9} - \frac{9659}{4194304} a^{8} - \frac{9693}{2097152} a^{7} - \frac{11367}{524288} a^{6} + \frac{309}{131072} a^{5} - \frac{447}{32768} a^{4} + \frac{33}{1024} a^{3} + \frac{19}{512} a^{2} - \frac{3}{32} a$, $\frac{1}{1994677812449869495550127212855296} a^{15} - \frac{42496337087057743890966977}{498669453112467373887531803213824} a^{14} + \frac{2363315238261840903532374371}{1994677812449869495550127212855296} a^{13} - \frac{12759013590047422521939125061}{997338906224934747775063606427648} a^{12} - \frac{229950576323245583492492825473}{1994677812449869495550127212855296} a^{11} - \frac{25131204558178493068799889847}{124667363278116843471882950803456} a^{10} + \frac{2539066406856120680951547484741}{1994677812449869495550127212855296} a^{9} + \frac{2871428291227508796775311259407}{997338906224934747775063606427648} a^{8} + \frac{1797536673267780077014732667947}{249334726556233686943765901606912} a^{7} + \frac{135122418598570013474024275247}{62333681639058421735941475401728} a^{6} - \frac{842980276234761668492546223841}{15583420409764605433985368850432} a^{5} - \frac{6423654936990939646434798147}{1947927551220575679248171106304} a^{4} - \frac{53251417137602872058756920069}{243490943902571959906021388288} a^{3} - \frac{6424904042918485690189547091}{30436367987821494988252673536} a^{2} + \frac{650110603336955734967254577}{1902272999238843436765792096} a + \frac{27202703070299716210871110}{59446031226213857398931003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 514588263316000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.8.26524803844351897.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 73 | Data not computed | ||||||