Normalized defining polynomial
\( x^{16} - 4 x^{15} - 8 x^{14} + 80 x^{13} - 440 x^{12} + 1844 x^{11} - 3324 x^{10} - 15060 x^{9} + 102439 x^{8} - 307740 x^{7} + 480604 x^{6} + 4492 x^{5} - 1910700 x^{4} + 4629640 x^{3} - 4781532 x^{2} + 1837308 x - 229679 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12136551081312256000000000000=2^{44}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31} a^{14} - \frac{6}{31} a^{13} + \frac{4}{31} a^{12} + \frac{10}{31} a^{11} + \frac{5}{31} a^{10} + \frac{5}{31} a^{9} + \frac{14}{31} a^{8} + \frac{9}{31} a^{7} - \frac{3}{31} a^{6} + \frac{3}{31} a^{5} + \frac{5}{31} a^{4} - \frac{13}{31} a^{3} + \frac{11}{31} a^{2} - \frac{15}{31} a$, $\frac{1}{673313264989433477314300667846413446855633293849} a^{15} - \frac{463406255102891535548608599037493608352252607}{673313264989433477314300667846413446855633293849} a^{14} - \frac{34641086571288024792994636188322301862633032539}{673313264989433477314300667846413446855633293849} a^{13} - \frac{3030897200152311562818583623818783878950723552}{35437540262601761963910561465600707729243857571} a^{12} + \frac{212660733378567300926721382533527381599593918493}{673313264989433477314300667846413446855633293849} a^{11} + \frac{313302616997179658937293735070751225686736583261}{673313264989433477314300667846413446855633293849} a^{10} - \frac{87489230960172242142917828172277543974359838446}{673313264989433477314300667846413446855633293849} a^{9} - \frac{112305350530928302862380608015592250708866988861}{673313264989433477314300667846413446855633293849} a^{8} + \frac{62701650088146689079918569607898484518525134365}{673313264989433477314300667846413446855633293849} a^{7} - \frac{112754782842425982792312271106464176260276997155}{673313264989433477314300667846413446855633293849} a^{6} - \frac{16634841864449419013428227648649196068013890914}{35437540262601761963910561465600707729243857571} a^{5} + \frac{41988812161518970723126602861617838024822248942}{673313264989433477314300667846413446855633293849} a^{4} + \frac{117522865921922152907284765946025365733524640439}{673313264989433477314300667846413446855633293849} a^{3} - \frac{195833785289431376246642555724635056321934612921}{673313264989433477314300667846413446855633293849} a^{2} - \frac{299496118880514608318617055580622829362732931030}{673313264989433477314300667846413446855633293849} a - \frac{5093479645117502376890428561735858841944665516}{21719782741594628300461311866013336995343009479}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66685480.5243 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||