Normalized defining polynomial
\( x^{16} - 67 x^{14} - 8906 x^{13} - 243786 x^{12} + 418582 x^{11} + 34740094 x^{10} + 1097370602 x^{9} + 15244519653 x^{8} - 62119510308 x^{7} - 2434234654366 x^{6} - 33456378639173 x^{5} - 146350495119186 x^{4} + 2670926156166982 x^{3} + 20824625479139251 x^{2} + 57598242321428699 x + 485904167550453131 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1205418165202307934078936492069912344967184840483369=61^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1558.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{156521} a^{14} + \frac{61262}{156521} a^{13} - \frac{47099}{156521} a^{12} - \frac{13075}{156521} a^{11} - \frac{37214}{156521} a^{10} - \frac{17892}{156521} a^{9} + \frac{40273}{156521} a^{8} + \frac{71543}{156521} a^{7} - \frac{68709}{156521} a^{6} + \frac{42357}{156521} a^{5} + \frac{61639}{156521} a^{4} + \frac{33608}{156521} a^{3} - \frac{15222}{156521} a^{2} - \frac{63683}{156521} a - \frac{72651}{156521}$, $\frac{1}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{15} + \frac{646005418344157616088655921664303307809601409008259253240309506917961806181414632938516930685246793002245518837}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{14} + \frac{126442892527682179406187796837770108254717592612976972075172292576701228237485250842071811495880781078695604472710957}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{13} - \frac{112618997484471012137162311207742152861201253971136180462200448317105215602953818302811267986203094453435757982170574}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{12} + \frac{188782683887237318937417319416475726241017726024845079961832012881359109867898086951898325467340495700907151173625564}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{11} + \frac{215603667861821198665407979279674870861533897242782385949606844736491883825004814940637759721637872963535517673191375}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{10} - \frac{44226863122963833031167871062509805591328751551591297896800624417469303991025300608983767253376946571795642593604209}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{9} + \frac{91199357644416763275878797043077477091998701802448929469585137593933194307454324161904380619155078804334118639552373}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{8} + \frac{125864031841518853093347197464353794971735163537679069691779702778426737041534116042851819626045795849816197607126585}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{7} + \frac{159120391468953180148850671885921056785084267457692371405571682040240261884137918990782083849631004945065030512883736}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{6} - \frac{250399563362148226019456426021654415786649312691182244586155507118983334627557152582040835465522726083722114883485962}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{5} + \frac{51405787247852686755645018558962943791540382286687199503197668974991986812862288982504981758640364368219473601902946}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{4} + \frac{111263702319709761846202276130650163359560961337047762240854388944215982417232774482673437749634510360452396834017059}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{3} + \frac{169103252758168212026693883254341059902584952912954419106815023986808057471756514779062594103377955098194667530429136}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a^{2} - \frac{195539960142878024972110624334786695449111873200537335408174486145699577135067527050827303939207641182403119028221047}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313} a + \frac{92446817361294930147924667534017613938978401944633250994007468489482870170180371968144818775048759683091039924313380}{504678532167567305174560851333574116030874590402737433168808679700581179135382013772350464179739170631842153245576313}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8246406792500000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{4453}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{61}, \sqrt{73})\), 8.8.7796795992041567776329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.7.2 | $x^{8} - 1825$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.2 | $x^{8} - 1825$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |