Normalized defining polynomial
\( x^{16} - 2 x^{15} - 1151 x^{14} + 16767 x^{13} + 649621 x^{12} - 18427412 x^{11} - 177549808 x^{10} + 9762162282 x^{9} - 33442665892 x^{8} - 2778720508658 x^{7} + 31617335805990 x^{6} + 426501635882804 x^{5} - 6666671433405269 x^{4} - 34592170126209414 x^{3} + 593366179212502821 x^{2} + 1049166479823709608 x - 18530020609680400767 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1205418165202307934078936492069912344967184840483369=61^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1558.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{171} a^{12} + \frac{17}{171} a^{11} + \frac{23}{171} a^{10} - \frac{26}{57} a^{9} - \frac{28}{171} a^{8} - \frac{2}{19} a^{7} + \frac{7}{19} a^{6} - \frac{25}{57} a^{5} - \frac{28}{171} a^{4} + \frac{1}{19} a^{3} + \frac{1}{171} a^{2} - \frac{16}{57} a + \frac{1}{19}$, $\frac{1}{171} a^{13} + \frac{1}{9} a^{11} - \frac{13}{171} a^{10} + \frac{44}{171} a^{9} + \frac{2}{171} a^{8} + \frac{3}{19} a^{7} + \frac{17}{57} a^{6} + \frac{50}{171} a^{5} - \frac{28}{171} a^{4} + \frac{4}{9} a^{3} + \frac{49}{171} a^{2} - \frac{10}{57} a + \frac{2}{19}$, $\frac{1}{9747} a^{14} - \frac{7}{3249} a^{13} + \frac{25}{9747} a^{12} - \frac{25}{9747} a^{11} + \frac{227}{9747} a^{10} - \frac{3328}{9747} a^{9} + \frac{442}{1083} a^{8} - \frac{1519}{3249} a^{7} - \frac{643}{9747} a^{6} + \frac{3602}{9747} a^{5} - \frac{188}{9747} a^{4} + \frac{3352}{9747} a^{3} + \frac{1169}{3249} a^{2} - \frac{31}{361} a - \frac{107}{361}$, $\frac{1}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{15} - \frac{6562039038441777374182550248762438598363315764581125710328070045256707828366974135778041289998086655415106288955687}{156597244744775501535066527001163147741937555332980675391971825359595529297848116516050727706307955918322630358506201219} a^{14} - \frac{818974716693931849300053668107164677876756797107827894419520952889234917958064614340642422520957789596203452305546010}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{13} - \frac{1004501599565128214373660776513645929620505015349234782447588704978884318941950147600867158338711545998097429415721086}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{12} - \frac{24199071443503106982570929458373181558359619565088136392922288970770572679076622198388314723784240110142472119218017300}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{11} + \frac{175740730737986558335698831932384544637780826033095314785177505375843208611660148488005075365514955911917262952004734239}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{10} + \frac{216465218640176011882411182050578147359391769282395860852949474201309621710120893845167217066337399723860135727012525321}{469791734234326504605199581003489443225812665998942026175915476078786587893544349548152183118923867754967891075518603657} a^{9} - \frac{602012056194997740855558897309859583122608422165755516206970812652137625828812951634927860272219005176758081842227694}{469791734234326504605199581003489443225812665998942026175915476078786587893544349548152183118923867754967891075518603657} a^{8} - \frac{272023086374402350959922491504007697412760980068086999762456684539929881936440604600372057609354499829660293289035401642}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{7} - \frac{113823078666533513582925187340148289425454963110588989237361853787450683360370906312546731152696036993877754792260771975}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{6} + \frac{476142802858954305526549385837910647171362420920005532792124970534022360883954301753976991981267374591742711473659261950}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{5} - \frac{322680563601876813498952621696361467144937492145285383018306275705886714085313791435481629866525443803269916314228645705}{1409375202702979513815598743010468329677437997996826078527746428236359763680633048644456549356771603264903673226555810971} a^{4} - \frac{73314782793489624231772561508996728633913630401777367525906861386322249639193097882525173879247816667101181451047679875}{156597244744775501535066527001163147741937555332980675391971825359595529297848116516050727706307955918322630358506201219} a^{3} - \frac{68668164182437994457248382594217035608586254132476572247272024274670058244093972322386901858834551803243296003654234492}{156597244744775501535066527001163147741937555332980675391971825359595529297848116516050727706307955918322630358506201219} a^{2} + \frac{16096887264144079732265612458958047155709397214439318090988156085761460903702891424221627783890736769184429550641113870}{156597244744775501535066527001163147741937555332980675391971825359595529297848116516050727706307955918322630358506201219} a + \frac{16827999685707244271273128306283851195291211782143840047866353074991977786489080936223750399869764686822090678178078023}{52199081581591833845022175667054382580645851777660225130657275119865176432616038838683575902102651972774210119502067073}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10563473953900000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\sqrt{4453}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{61}, \sqrt{73})\), 8.8.7796795992041567776329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.1 | $x^{8} - 61$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |