Normalized defining polynomial
\( x^{16} - 5 x^{15} + 2 x^{14} + 27 x^{13} - 54 x^{12} - 88 x^{11} + 153 x^{10} + 452 x^{9} + 390 x^{8} - 471 x^{7} - 2690 x^{6} - 2982 x^{5} + 5581 x^{4} + 10232 x^{3} - 2816 x^{2} - 11092 x - 4519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120109163751936100000000=2^{8}\cdot 5^{8}\cdot 7^{4}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{3}{13} a^{11} + \frac{2}{13} a^{10} - \frac{2}{13} a^{9} + \frac{5}{13} a^{8} + \frac{5}{13} a^{7} + \frac{3}{13} a^{6} + \frac{2}{13} a^{5} + \frac{5}{13} a^{4} - \frac{1}{13} a^{3} + \frac{6}{13} a^{2} + \frac{2}{13} a + \frac{5}{13}$, $\frac{1}{3705} a^{14} - \frac{44}{1235} a^{13} + \frac{21}{247} a^{12} + \frac{393}{1235} a^{11} - \frac{119}{1235} a^{10} + \frac{737}{3705} a^{9} - \frac{239}{3705} a^{8} - \frac{154}{1235} a^{7} + \frac{568}{3705} a^{6} - \frac{161}{741} a^{5} - \frac{216}{1235} a^{4} - \frac{811}{3705} a^{3} - \frac{1609}{3705} a^{2} - \frac{259}{3705} a + \frac{1576}{3705}$, $\frac{1}{57621079174829894857185} a^{15} - \frac{479880909061102057}{11524215834965978971437} a^{14} - \frac{519694493658489651108}{19207026391609964952395} a^{13} + \frac{1204155275899207262223}{19207026391609964952395} a^{12} + \frac{1125598902411233216622}{19207026391609964952395} a^{11} + \frac{12369116249598413381873}{57621079174829894857185} a^{10} - \frac{910160483448353639618}{3841405278321992990479} a^{9} + \frac{1306808207125308112742}{11524215834965978971437} a^{8} - \frac{24469941706944021247826}{57621079174829894857185} a^{7} - \frac{7036896030849787296138}{19207026391609964952395} a^{6} + \frac{4012733651768271020402}{57621079174829894857185} a^{5} + \frac{5905666704754941227138}{57621079174829894857185} a^{4} + \frac{19984425239692451637409}{57621079174829894857185} a^{3} + \frac{488569901372210417371}{4432390705756145758245} a^{2} + \frac{2827443300830542921811}{19207026391609964952395} a - \frac{1070395991448443296337}{3032688377622626045115}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 372761.232576 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_2^2$ (as 16T119):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2^4:C_2^2$ |
| Character table for $C_2^4:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{29}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1, 8.4.346567690000.1, 8.4.346567690000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |