Properties

Label 16.8.11769324018...0000.1
Degree $16$
Signature $[8, 4]$
Discriminant $2^{12}\cdot 3^{12}\cdot 5^{8}\cdot 7^{12}$
Root discriminant $36.89$
Ramified primes $2, 3, 5, 7$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^4.C_2^3$ (as 16T329)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 0, -100, 0, -733, 0, -145, 0, 484, 0, 55, 0, -52, 0, -5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^14 - 52*x^12 + 55*x^10 + 484*x^8 - 145*x^6 - 733*x^4 - 100*x^2 + 16)
 
gp: K = bnfinit(x^16 - 5*x^14 - 52*x^12 + 55*x^10 + 484*x^8 - 145*x^6 - 733*x^4 - 100*x^2 + 16, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{14} - 52 x^{12} + 55 x^{10} + 484 x^{8} - 145 x^{6} - 733 x^{4} - 100 x^{2} + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11769324018218625600000000=2^{12}\cdot 3^{12}\cdot 5^{8}\cdot 7^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{10} a^{8} + \frac{2}{5} a^{4} - \frac{1}{2} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{5} - \frac{1}{10} a$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{6} - \frac{1}{2} a^{4} - \frac{1}{20} a^{2}$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{7} + \frac{9}{20} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{8} + \frac{9}{20} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{40} a^{13} - \frac{1}{40} a^{12} - \frac{1}{40} a^{11} - \frac{1}{40} a^{9} - \frac{1}{40} a^{8} + \frac{1}{40} a^{7} - \frac{1}{4} a^{6} - \frac{1}{40} a^{5} - \frac{7}{40} a^{4} - \frac{9}{40} a^{3} - \frac{1}{4} a^{2} - \frac{1}{5}$, $\frac{1}{858280} a^{14} - \frac{2953}{429140} a^{12} - \frac{1}{40} a^{11} - \frac{16371}{858280} a^{10} - \frac{1}{20} a^{9} + \frac{739}{107285} a^{8} - \frac{9}{40} a^{7} + \frac{110139}{858280} a^{6} - \frac{1}{5} a^{5} - \frac{9602}{21457} a^{4} - \frac{19}{40} a^{3} - \frac{3451}{42914} a^{2} - \frac{1}{5} a + \frac{36318}{107285}$, $\frac{1}{858280} a^{15} - \frac{2953}{429140} a^{13} - \frac{1}{40} a^{12} - \frac{16371}{858280} a^{11} + \frac{739}{107285} a^{9} - \frac{1}{40} a^{8} + \frac{110139}{858280} a^{7} - \frac{1}{4} a^{6} + \frac{2253}{42914} a^{5} - \frac{7}{40} a^{4} + \frac{9003}{21457} a^{3} - \frac{1}{4} a^{2} - \frac{34649}{214570} a - \frac{1}{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4948356.49425 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T329):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 29 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{105}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{5}) \), 4.4.231525.1 x2, 4.4.46305.1 x2, \(\Q(\sqrt{5}, \sqrt{21})\), 8.8.53603825625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
3Data not computed
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7Data not computed