Properties

Label 16.8.116...241.1
Degree $16$
Signature $[8, 4]$
Discriminant $1.165\times 10^{25}$
Root discriminant \(36.87\)
Ramified primes $13,29$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^3:C_4$ (as 16T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576)
 
gp: K = bnfinit(y^16 - 2*y^15 + 2*y^14 - 33*y^13 + 53*y^12 + 83*y^11 - 77*y^10 + 51*y^9 - 1774*y^8 + 1850*y^7 + 5383*y^6 - 6162*y^5 - 5048*y^4 + 6520*y^3 + 992*y^2 - 3360*y - 576, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576)
 

\( x^{16} - 2 x^{15} + 2 x^{14} - 33 x^{13} + 53 x^{12} + 83 x^{11} - 77 x^{10} + 51 x^{9} - 1774 x^{8} + \cdots - 576 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[8, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11654783511381160590876241\) \(\medspace = 13^{12}\cdot 29^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(36.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $13^{3/4}29^{1/2}\approx 36.868588674506164$
Ramified primes:   \(13\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{6}a$, $\frac{1}{12}a^{10}-\frac{1}{12}a^{9}-\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}+\frac{5}{12}a^{2}-\frac{1}{6}a$, $\frac{1}{12}a^{11}-\frac{1}{12}a^{9}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}+\frac{1}{4}a^{4}+\frac{1}{6}a^{3}+\frac{1}{4}a^{2}-\frac{1}{6}a$, $\frac{1}{72}a^{12}+\frac{1}{36}a^{11}-\frac{1}{36}a^{10}-\frac{1}{72}a^{9}-\frac{1}{24}a^{8}-\frac{1}{8}a^{7}+\frac{5}{24}a^{6}+\frac{1}{24}a^{5}+\frac{1}{36}a^{4}+\frac{5}{36}a^{3}+\frac{11}{72}a^{2}-\frac{13}{36}a-\frac{1}{6}$, $\frac{1}{144}a^{13}-\frac{1}{24}a^{11}+\frac{1}{48}a^{10}+\frac{11}{144}a^{9}+\frac{11}{48}a^{8}-\frac{1}{48}a^{7}-\frac{3}{16}a^{6}+\frac{17}{36}a^{5}+\frac{7}{24}a^{4}+\frac{3}{16}a^{3}-\frac{1}{12}a^{2}-\frac{1}{18}a+\frac{1}{6}$, $\frac{1}{145728}a^{14}-\frac{85}{36432}a^{13}-\frac{181}{72864}a^{12}+\frac{659}{145728}a^{11}-\frac{707}{48576}a^{10}+\frac{1747}{48576}a^{9}+\frac{6551}{48576}a^{8}+\frac{3079}{48576}a^{7}-\frac{8491}{36432}a^{6}+\frac{11255}{72864}a^{5}+\frac{1}{13248}a^{4}+\frac{295}{2277}a^{3}-\frac{333}{4048}a^{2}-\frac{25}{66}a-\frac{265}{1012}$, $\frac{1}{31\!\cdots\!68}a^{15}+\frac{4220154683}{15\!\cdots\!84}a^{14}-\frac{275904944855}{526916805505728}a^{13}-\frac{15227346880369}{31\!\cdots\!68}a^{12}+\frac{14191788313255}{10\!\cdots\!56}a^{11}+\frac{127705446040471}{31\!\cdots\!68}a^{10}+\frac{216942698160391}{31\!\cdots\!68}a^{9}-\frac{2827875056255}{15272950884224}a^{8}-\frac{7180571555}{634584671424}a^{7}+\frac{780734529811543}{15\!\cdots\!84}a^{6}+\frac{134117729733023}{351277870337152}a^{5}-\frac{447339078375385}{15\!\cdots\!84}a^{4}-\frac{33129623514013}{263458402752864}a^{3}+\frac{165953502262909}{395187604129296}a^{2}+\frac{76874340142937}{197593802064648}a-\frac{8294874976735}{32932300344108}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1923825376543}{31\!\cdots\!68}a^{15}-\frac{3317678706115}{790375208258592}a^{14}+\frac{3859456791983}{526916805505728}a^{13}-\frac{98810200001779}{31\!\cdots\!68}a^{12}+\frac{48404253572881}{351277870337152}a^{11}-\frac{44517073143137}{351277870337152}a^{10}-\frac{385686802021637}{31\!\cdots\!68}a^{9}+\frac{91438900592201}{10\!\cdots\!56}a^{8}-\frac{468376694791}{317292335712}a^{7}+\frac{10\!\cdots\!57}{15\!\cdots\!84}a^{6}-\frac{11\!\cdots\!23}{351277870337152}a^{5}-\frac{22\!\cdots\!31}{197593802064648}a^{4}+\frac{927166667412225}{87819467584288}a^{3}+\frac{56419442192967}{21954866896072}a^{2}-\frac{12\!\cdots\!13}{197593802064648}a+\frac{6251995957519}{16466150172054}$, $\frac{6106701078541}{790375208258592}a^{15}-\frac{35994086418703}{15\!\cdots\!84}a^{14}+\frac{4951504334881}{131729201376432}a^{13}-\frac{38711448624601}{131729201376432}a^{12}+\frac{10\!\cdots\!17}{15\!\cdots\!84}a^{11}-\frac{54327333288203}{15\!\cdots\!84}a^{10}-\frac{81556715162649}{175638935168576}a^{9}+\frac{466702991912449}{526916805505728}a^{8}-\frac{9355945869365}{634584671424}a^{7}+\frac{11\!\cdots\!33}{395187604129296}a^{6}+\frac{162324697676491}{11975381943312}a^{5}-\frac{98\!\cdots\!65}{175638935168576}a^{4}+\frac{76\!\cdots\!05}{395187604129296}a^{3}+\frac{85\!\cdots\!95}{395187604129296}a^{2}-\frac{117305032929279}{5488716724018}a-\frac{771991539113}{997948495276}$, $\frac{127883021}{14991444864}a^{15}-\frac{15664729}{624643536}a^{14}+\frac{100121317}{2498574144}a^{13}-\frac{531542809}{1665716096}a^{12}+\frac{11284129759}{14991444864}a^{11}+\frac{86611523}{4997148288}a^{10}-\frac{3328244177}{4997148288}a^{9}+\frac{1612192789}{1665716096}a^{8}-\frac{80199271}{4983858}a^{7}+\frac{25710447307}{832858048}a^{6}+\frac{29762791327}{1665716096}a^{5}-\frac{28478736771}{416429024}a^{4}+\frac{63201078923}{3747861216}a^{3}+\frac{982570463}{26026814}a^{2}-\frac{2336105835}{104107256}a-\frac{67513489}{13013407}$, $\frac{5520899751529}{790375208258592}a^{15}-\frac{5885948189845}{395187604129296}a^{14}+\frac{3297334969519}{131729201376432}a^{13}-\frac{197309958400853}{790375208258592}a^{12}+\frac{342898742039533}{790375208258592}a^{11}+\frac{17963580300331}{87819467584288}a^{10}-\frac{89088084996457}{790375208258592}a^{9}+\frac{177040193642005}{263458402752864}a^{8}-\frac{178532732041}{14422378896}a^{7}+\frac{61\!\cdots\!19}{395187604129296}a^{6}+\frac{52\!\cdots\!89}{263458402752864}a^{5}-\frac{12\!\cdots\!73}{395187604129296}a^{4}-\frac{54566386376305}{8981536457484}a^{3}+\frac{12\!\cdots\!95}{65864600688216}a^{2}-\frac{20278349914673}{8981536457484}a-\frac{80911373841055}{16466150172054}$, $\frac{3775430516819}{263458402752864}a^{15}-\frac{24845482447609}{526916805505728}a^{14}+\frac{1858502802195}{21954866896072}a^{13}-\frac{226608803867573}{395187604129296}a^{12}+\frac{23\!\cdots\!09}{15\!\cdots\!84}a^{11}-\frac{877750938450323}{15\!\cdots\!84}a^{10}-\frac{10\!\cdots\!65}{15\!\cdots\!84}a^{9}+\frac{704749334141969}{526916805505728}a^{8}-\frac{5758767350239}{211528223808}a^{7}+\frac{13\!\cdots\!79}{21954866896072}a^{6}+\frac{887943540197947}{131729201376432}a^{5}-\frac{72\!\cdots\!75}{68728278979008}a^{4}+\frac{93\!\cdots\!33}{197593802064648}a^{3}+\frac{17\!\cdots\!57}{395187604129296}a^{2}-\frac{34\!\cdots\!81}{98796901032324}a-\frac{225405325850965}{32932300344108}$, $\frac{103166102163}{15967175924416}a^{15}-\frac{36692161933}{1995896990552}a^{14}+\frac{2104339031875}{71852291659872}a^{13}-\frac{11403305801237}{47901527773248}a^{12}+\frac{8710795742201}{15967175924416}a^{11}+\frac{2435498049161}{47901527773248}a^{10}-\frac{78013164262001}{143704583319744}a^{9}+\frac{40201001975341}{47901527773248}a^{8}-\frac{58286680901}{4807459632}a^{7}+\frac{178656531108467}{7983587962208}a^{6}+\frac{21\!\cdots\!77}{143704583319744}a^{5}-\frac{211363604945607}{3991793981104}a^{4}+\frac{21924053443465}{1496922742914}a^{3}+\frac{179892378786617}{5987690971656}a^{2}-\frac{46736658202606}{2245384114371}a-\frac{2995398758423}{748461371457}$, $\frac{17238384020339}{31\!\cdots\!68}a^{15}-\frac{22869064767661}{15\!\cdots\!84}a^{14}+\frac{33643060908521}{15\!\cdots\!84}a^{13}-\frac{56832188771953}{287409166639488}a^{12}+\frac{149424688794723}{351277870337152}a^{11}+\frac{141022548893819}{10\!\cdots\!56}a^{10}-\frac{12\!\cdots\!75}{31\!\cdots\!68}a^{9}+\frac{153411743161241}{351277870337152}a^{8}-\frac{6349198248259}{634584671424}a^{7}+\frac{26\!\cdots\!01}{15\!\cdots\!84}a^{6}+\frac{52\!\cdots\!21}{31\!\cdots\!68}a^{5}-\frac{61\!\cdots\!93}{15\!\cdots\!84}a^{4}-\frac{895487528652047}{263458402752864}a^{3}+\frac{348931038254419}{11975381943312}a^{2}-\frac{13\!\cdots\!79}{197593802064648}a-\frac{362760581022529}{32932300344108}$, $\frac{21932419478083}{15\!\cdots\!84}a^{15}-\frac{69373126320409}{15\!\cdots\!84}a^{14}+\frac{58346726294929}{790375208258592}a^{13}-\frac{845891526752653}{15\!\cdots\!84}a^{12}+\frac{32116220525563}{23950763886624}a^{11}-\frac{31124579103197}{131729201376432}a^{10}-\frac{818870411502725}{790375208258592}a^{9}+\frac{13887204749579}{7983587962208}a^{8}-\frac{16898235624595}{634584671424}a^{7}+\frac{19\!\cdots\!35}{34364139489504}a^{6}+\frac{28\!\cdots\!43}{15\!\cdots\!84}a^{5}-\frac{18\!\cdots\!83}{15\!\cdots\!84}a^{4}+\frac{32\!\cdots\!97}{65864600688216}a^{3}+\frac{66\!\cdots\!33}{131729201376432}a^{2}-\frac{22\!\cdots\!61}{49398450516162}a-\frac{158035123033141}{32932300344108}$, $\frac{3273005675987}{526916805505728}a^{15}-\frac{1442354763137}{71852291659872}a^{14}+\frac{2188674987835}{71852291659872}a^{13}-\frac{371265693320969}{15\!\cdots\!84}a^{12}+\frac{951818775961553}{15\!\cdots\!84}a^{11}-\frac{1318460256121}{175638935168576}a^{10}-\frac{10\!\cdots\!33}{15\!\cdots\!84}a^{9}+\frac{126923649653175}{175638935168576}a^{8}-\frac{424512775815}{35254703968}a^{7}+\frac{18\!\cdots\!43}{71852291659872}a^{6}+\frac{20\!\cdots\!07}{15\!\cdots\!84}a^{5}-\frac{46\!\cdots\!15}{790375208258592}a^{4}+\frac{34\!\cdots\!77}{197593802064648}a^{3}+\frac{10\!\cdots\!09}{32932300344108}a^{2}-\frac{12\!\cdots\!45}{49398450516162}a-\frac{86613925935529}{16466150172054}$, $\frac{5226169128907}{526916805505728}a^{15}-\frac{47439026479565}{15\!\cdots\!84}a^{14}+\frac{4402736076229}{87819467584288}a^{13}-\frac{597607872925603}{15\!\cdots\!84}a^{12}+\frac{360483632230987}{395187604129296}a^{11}-\frac{75804385069387}{790375208258592}a^{10}-\frac{11741505909337}{17182069744752}a^{9}+\frac{25880474316443}{21954866896072}a^{8}-\frac{3980205481465}{211528223808}a^{7}+\frac{29\!\cdots\!09}{790375208258592}a^{6}+\frac{82\!\cdots\!91}{526916805505728}a^{5}-\frac{12\!\cdots\!71}{15\!\cdots\!84}a^{4}+\frac{11\!\cdots\!87}{395187604129296}a^{3}+\frac{14\!\cdots\!29}{395187604129296}a^{2}-\frac{27\!\cdots\!45}{98796901032324}a-\frac{179876661336653}{32932300344108}$, $\frac{6049519350865}{15\!\cdots\!84}a^{15}-\frac{9456238849933}{790375208258592}a^{14}+\frac{1775309749101}{87819467584288}a^{13}-\frac{232825263622297}{15\!\cdots\!84}a^{12}+\frac{64591110615765}{175638935168576}a^{11}-\frac{105053551403309}{15\!\cdots\!84}a^{10}-\frac{18348063746179}{68728278979008}a^{9}+\frac{69726915558387}{175638935168576}a^{8}-\frac{2277802039529}{317292335712}a^{7}+\frac{12\!\cdots\!57}{790375208258592}a^{6}+\frac{26\!\cdots\!13}{526916805505728}a^{5}-\frac{24\!\cdots\!81}{790375208258592}a^{4}+\frac{27335026585704}{2744358362009}a^{3}+\frac{17\!\cdots\!65}{98796901032324}a^{2}-\frac{230989542370189}{24699225258081}a-\frac{66044768919607}{16466150172054}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 19014964.3925 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{4}\cdot 19014964.3925 \cdot 1}{2\cdot\sqrt{11654783511381160590876241}}\cr\approx \mathstrut & 1.11115041839 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 2*x^15 + 2*x^14 - 33*x^13 + 53*x^12 + 83*x^11 - 77*x^10 + 51*x^9 - 1774*x^8 + 1850*x^7 + 5383*x^6 - 6162*x^5 - 5048*x^4 + 6520*x^3 + 992*x^2 - 3360*x - 576);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3:C_4$ (as 16T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3:C_4$
Character table for $C_2^3:C_4$

Intermediate fields

\(\Q(\sqrt{377}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{29}) \), 4.4.1847677.1 x2, 4.4.63713.1 x2, \(\Q(\sqrt{13}, \sqrt{29})\), 8.4.262608484333.1 x2, 8.4.3413910296329.1 x2, 8.8.3413910296329.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.4.262608484333.1, 8.4.3413910296329.1, 8.0.20200652641.2, 8.0.4059346369.1
Degree 16 siblings: 16.0.11654783511381160590876241.5, 16.0.68963216043675506454889.2, 16.0.13858244365494840179401.1
Minimal sibling: 8.0.20200652641.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }^{4}$ ${\href{/padicField/3.2.0.1}{2} }^{8}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ R ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{8}$ R ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.8.6.1$x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24242 x^{4} + 15024 x^{3} + 14408 x^{2} + 86496 x + 254881$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24242 x^{4} + 15024 x^{3} + 14408 x^{2} + 86496 x + 254881$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
\(29\) Copy content Toggle raw display 29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$