Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} - 33 x^{13} + 53 x^{12} + 83 x^{11} - 77 x^{10} + 51 x^{9} - 1774 x^{8} + 1850 x^{7} + 5383 x^{6} - 6162 x^{5} - 5048 x^{4} + 6520 x^{3} + 992 x^{2} - 3360 x - 576 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11654783511381160590876241=13^{12}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{6} a$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{6} a^{3} + \frac{1}{4} a^{2} - \frac{1}{6} a$, $\frac{1}{72} a^{12} + \frac{1}{36} a^{11} - \frac{1}{36} a^{10} - \frac{1}{72} a^{9} - \frac{1}{24} a^{8} - \frac{1}{8} a^{7} + \frac{5}{24} a^{6} + \frac{1}{24} a^{5} + \frac{1}{36} a^{4} + \frac{5}{36} a^{3} + \frac{11}{72} a^{2} - \frac{13}{36} a - \frac{1}{6}$, $\frac{1}{144} a^{13} - \frac{1}{24} a^{11} + \frac{1}{48} a^{10} + \frac{11}{144} a^{9} + \frac{11}{48} a^{8} - \frac{1}{48} a^{7} - \frac{3}{16} a^{6} + \frac{17}{36} a^{5} + \frac{7}{24} a^{4} + \frac{3}{16} a^{3} - \frac{1}{12} a^{2} - \frac{1}{18} a + \frac{1}{6}$, $\frac{1}{145728} a^{14} - \frac{85}{36432} a^{13} - \frac{181}{72864} a^{12} + \frac{659}{145728} a^{11} - \frac{707}{48576} a^{10} + \frac{1747}{48576} a^{9} + \frac{6551}{48576} a^{8} + \frac{3079}{48576} a^{7} - \frac{8491}{36432} a^{6} + \frac{11255}{72864} a^{5} + \frac{1}{13248} a^{4} + \frac{295}{2277} a^{3} - \frac{333}{4048} a^{2} - \frac{25}{66} a - \frac{265}{1012}$, $\frac{1}{3161500833034368} a^{15} + \frac{4220154683}{1580750416517184} a^{14} - \frac{275904944855}{526916805505728} a^{13} - \frac{15227346880369}{3161500833034368} a^{12} + \frac{14191788313255}{1053833611011456} a^{11} + \frac{127705446040471}{3161500833034368} a^{10} + \frac{216942698160391}{3161500833034368} a^{9} - \frac{2827875056255}{15272950884224} a^{8} - \frac{7180571555}{634584671424} a^{7} + \frac{780734529811543}{1580750416517184} a^{6} + \frac{134117729733023}{351277870337152} a^{5} - \frac{447339078375385}{1580750416517184} a^{4} - \frac{33129623514013}{263458402752864} a^{3} + \frac{165953502262909}{395187604129296} a^{2} + \frac{76874340142937}{197593802064648} a - \frac{8294874976735}{32932300344108}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19014964.3925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{377}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{29}) \), 4.4.1847677.1 x2, 4.4.63713.1 x2, \(\Q(\sqrt{13}, \sqrt{29})\), 8.4.262608484333.1 x2, 8.4.3413910296329.1 x2, 8.8.3413910296329.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |