Normalized defining polynomial
\( x^{16} - 18 x^{14} - 13001 x^{12} - 429814 x^{10} + 7092685 x^{8} + 161587388 x^{6} - 1120383490 x^{4} - 13483094756 x^{2} + 67809201604 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114205898821156016581142118400000000=2^{38}\cdot 5^{8}\cdot 89^{4}\cdot 130201^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $155.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 89, 130201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{388058918244009834285924187419742689458} a^{14} - \frac{57551510097577453348629919856715942565}{388058918244009834285924187419742689458} a^{12} - \frac{172991091723919640068085038465777453081}{388058918244009834285924187419742689458} a^{10} - \frac{83803835986456205983669567539420010565}{388058918244009834285924187419742689458} a^{8} + \frac{127604181784849044883217702054867850913}{388058918244009834285924187419742689458} a^{6} + \frac{48483605726627002257210319254095341027}{388058918244009834285924187419742689458} a^{4} - \frac{56197784368620715602561574380593764864}{194029459122004917142962093709871344729} a^{2} + \frac{629742371059509165082936854553455}{1490230175820499974216496752788929}$, $\frac{1}{388058918244009834285924187419742689458} a^{15} - \frac{57551510097577453348629919856715942565}{388058918244009834285924187419742689458} a^{13} - \frac{172991091723919640068085038465777453081}{388058918244009834285924187419742689458} a^{11} - \frac{83803835986456205983669567539420010565}{388058918244009834285924187419742689458} a^{9} + \frac{127604181784849044883217702054867850913}{388058918244009834285924187419742689458} a^{7} + \frac{48483605726627002257210319254095341027}{388058918244009834285924187419742689458} a^{5} - \frac{56197784368620715602561574380593764864}{194029459122004917142962093709871344729} a^{3} + \frac{629742371059509165082936854553455}{1490230175820499974216496752788929} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 525423903410 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 124 conjugacy class representatives for t16n1605 are not computed |
| Character table for t16n1605 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2225.1, 8.8.5069440000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.48 | $x^{8} + 6 x^{6} + 2 x^{4} + 12$ | $4$ | $2$ | $18$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ |
| 2.8.20.42 | $x^{8} + 16 x^{7} + 8 x^{6} + 240$ | $4$ | $2$ | $20$ | $(C_4^2 : C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| 5 | Data not computed | ||||||
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 130201 | Data not computed | ||||||