Normalized defining polynomial
\( x^{16} - 4 x^{15} + 6 x^{14} + 13 x^{13} - 224 x^{12} + 398 x^{11} - 655 x^{10} + 367 x^{9} + 7888 x^{8} - 4578 x^{7} + 28384 x^{6} - 17273 x^{5} - 37833 x^{4} - 26265 x^{3} - 39725 x^{2} + 3088 x + 1793 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112920250769252553123463877=483345053^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $483345053$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11438388593460051366476673524398178871449} a^{15} - \frac{3413339522540017057673829644826465942701}{11438388593460051366476673524398178871449} a^{14} + \frac{2638501241069845450831806518030140256932}{11438388593460051366476673524398178871449} a^{13} + \frac{1725803275921177291073938211382062880098}{11438388593460051366476673524398178871449} a^{12} + \frac{5177639510769547847280742468817386982486}{11438388593460051366476673524398178871449} a^{11} - \frac{1027162966537198837925101737561406734300}{11438388593460051366476673524398178871449} a^{10} - \frac{2689110582213051398910737619269717399124}{11438388593460051366476673524398178871449} a^{9} + \frac{4282203508729482222100203503268205062874}{11438388593460051366476673524398178871449} a^{8} + \frac{2645121574972462610724734691985710979030}{11438388593460051366476673524398178871449} a^{7} + \frac{2329499799149832912950244057022067422754}{11438388593460051366476673524398178871449} a^{6} + \frac{460156908641678845367552346761117167337}{11438388593460051366476673524398178871449} a^{5} + \frac{2164450109944236231414084463111376851751}{11438388593460051366476673524398178871449} a^{4} - \frac{2269977118971995621606065134752037605227}{11438388593460051366476673524398178871449} a^{3} - \frac{2558659834220540437160104482017421731467}{11438388593460051366476673524398178871449} a^{2} - \frac{5260995770925581754205223941858123332130}{11438388593460051366476673524398178871449} a - \frac{4200040332497827966145939615457724622585}{11438388593460051366476673524398178871449}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10113974.735 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.8.483345053.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $16$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 483345053 | Data not computed | ||||||