Normalized defining polynomial
\( x^{16} - 6 x^{15} - 663 x^{14} + 6072 x^{13} - 138630 x^{12} + 6385537 x^{11} - 6123213 x^{10} - 1683482107 x^{9} + 4616835965 x^{8} + 307874361192 x^{7} - 2707188392044 x^{6} - 12394664061501 x^{5} + 320379262260514 x^{4} - 2174612665157564 x^{3} + 7438959624205646 x^{2} - 13129043796800163 x + 9516392527011651 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1099877147396767625299704166328746389549375427801=37^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1005.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{111} a^{8} - \frac{1}{37} a^{7} - \frac{1}{37} a^{6} - \frac{44}{111} a^{5} - \frac{7}{37} a^{4} + \frac{47}{111} a^{3} + \frac{49}{111} a^{2} + \frac{4}{111} a - \frac{7}{37}$, $\frac{1}{333} a^{9} - \frac{4}{111} a^{7} - \frac{16}{333} a^{6} + \frac{23}{111} a^{5} - \frac{164}{333} a^{4} - \frac{106}{333} a^{3} - \frac{34}{333} a^{2} + \frac{28}{333} a - \frac{7}{37}$, $\frac{1}{333} a^{10} - \frac{52}{333} a^{7} + \frac{11}{111} a^{6} - \frac{26}{333} a^{5} - \frac{25}{333} a^{4} - \frac{136}{333} a^{3} - \frac{50}{333} a^{2} - \frac{5}{111} a + \frac{9}{37}$, $\frac{1}{999} a^{11} + \frac{1}{999} a^{10} - \frac{1}{999} a^{9} - \frac{4}{999} a^{8} + \frac{71}{999} a^{7} - \frac{121}{999} a^{6} + \frac{70}{333} a^{5} + \frac{8}{37} a^{4} + \frac{67}{999} a^{3} - \frac{454}{999} a^{2} - \frac{103}{999} a + \frac{5}{37}$, $\frac{1}{999} a^{12} + \frac{1}{999} a^{10} + \frac{1}{333} a^{8} + \frac{55}{333} a^{7} - \frac{68}{999} a^{6} - \frac{1}{37} a^{5} - \frac{203}{999} a^{4} + \frac{31}{999} a^{3} + \frac{26}{111} a^{2} + \frac{322}{999} a + \frac{16}{37}$, $\frac{1}{999} a^{13} - \frac{1}{999} a^{10} + \frac{1}{999} a^{9} - \frac{2}{999} a^{8} + \frac{77}{999} a^{7} - \frac{11}{999} a^{6} + \frac{244}{999} a^{5} + \frac{235}{999} a^{4} + \frac{440}{999} a^{3} + \frac{491}{999} a^{2} + \frac{100}{999} a - \frac{13}{37}$, $\frac{1}{8991} a^{14} + \frac{2}{8991} a^{13} + \frac{2}{8991} a^{12} - \frac{1}{2997} a^{11} + \frac{11}{8991} a^{10} + \frac{5}{8991} a^{9} + \frac{2}{2997} a^{8} - \frac{419}{8991} a^{7} - \frac{746}{8991} a^{6} - \frac{328}{999} a^{5} + \frac{368}{999} a^{4} + \frac{845}{2997} a^{3} - \frac{4211}{8991} a^{2} + \frac{68}{999} a + \frac{18}{37}$, $\frac{1}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{15} - \frac{3171452363620800748771992258698218884086154497394189208862019563492857930834092581}{286388285885821181434650121264844199851927672704329270809362104688476571792908441662061} a^{14} - \frac{16133298153416105613052260781558177547760295699491811846480013970523537668372305549495}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{13} - \frac{6469444334541566889820237387097834744941940990268960447532595268104152620812525875492}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{12} - \frac{2687773799540789722516348178077021770430457097794449628114670728430783397573847669284}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{11} + \frac{1055273060264439926423361760246803716688690437246709520146215068293662538142211398468}{952047544971783927471944997718265853561813614665743251609501050721151846771019954714419} a^{10} - \frac{50082175621087568907240758996071466963762260772620313803784645246025270469206205992964}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{9} + \frac{33617735678434697731068718051293975049750052925135114555898922215387133667502471124617}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{8} + \frac{3877411834425897848757530766980064878288419334994965090956081844312393403743337505227281}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{7} - \frac{5092560942187952936094965027250883442898732170189812083905926636220026136983862588347241}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{6} + \frac{16091630932236316156391403760076802121706182767914404133251770943431691003348662924470}{434885915604395127363727961920689340515890169662129633451253566378797757167009115116463} a^{5} + \frac{2564895566855413689675267994538681244282175107469271501917843364519081881302849446561117}{11741919721318668438820654971858612193929034580877500103183846292227539443509246108144501} a^{4} + \frac{15772133654297817936341453210852468633431081604228900142105385053724049382436628347225018}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{3} + \frac{14441118860024124860425698195729835498584847112789563464067850656882395534072291074112886}{35225759163956005316461964915575836581787103742632500309551538876682618330527738324433503} a^{2} - \frac{81117456597562287181094631294260300085287237595151949710656921702189955319797391930846}{1304657746813185382091183885762068021547670508986388900353760699136393271501027345349389} a + \frac{72107275135054728733844857699420240133317535805613386117249313903047750091647748270549}{144961971868131709121242653973563113505296723220709877817084522126265919055669705038821}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 496887369393000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{2701}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{37}, \sqrt{73})\), 8.8.388282220975269366201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |