Normalized defining polynomial
\( x^{16} - 4 x^{15} - 29 x^{14} + 119 x^{13} - 18187 x^{12} + 23439 x^{11} - 331733 x^{10} - 5090319 x^{9} + 95292171 x^{8} - 177168789 x^{7} - 282326958 x^{6} + 20777765544 x^{5} - 93063891411 x^{4} - 221952921930 x^{3} + 259076011275 x^{2} + 2244417237747 x + 550007954217 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1099877147396767625299704166328746389549375427801=37^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1005.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{7} - \frac{1}{27} a^{5} + \frac{4}{27} a^{4} - \frac{1}{27} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{1971} a^{8} - \frac{2}{1971} a^{7} + \frac{20}{1971} a^{6} - \frac{52}{657} a^{5} + \frac{71}{657} a^{4} - \frac{466}{1971} a^{3} - \frac{11}{657} a^{2} - \frac{71}{219} a - \frac{35}{73}$, $\frac{1}{1971} a^{9} + \frac{16}{1971} a^{7} + \frac{103}{1971} a^{6} - \frac{11}{219} a^{5} - \frac{259}{1971} a^{4} - \frac{89}{1971} a^{3} - \frac{308}{657} a^{2} - \frac{101}{219} a + \frac{3}{73}$, $\frac{1}{5913} a^{10} - \frac{1}{5913} a^{9} + \frac{1}{5913} a^{8} + \frac{44}{5913} a^{7} + \frac{155}{5913} a^{6} - \frac{125}{1971} a^{5} - \frac{689}{5913} a^{4} - \frac{37}{219} a^{3} + \frac{8}{657} a^{2} - \frac{95}{219} a + \frac{28}{73}$, $\frac{1}{53217} a^{11} - \frac{4}{53217} a^{10} + \frac{7}{53217} a^{9} + \frac{2}{53217} a^{8} + \frac{587}{53217} a^{7} - \frac{218}{17739} a^{6} - \frac{8012}{53217} a^{5} + \frac{983}{5913} a^{4} - \frac{2}{219} a^{3} - \frac{223}{657} a^{2} + \frac{251}{657} a + \frac{1}{73}$, $\frac{1}{319302} a^{12} + \frac{1}{159651} a^{11} - \frac{17}{319302} a^{10} - \frac{32}{159651} a^{9} - \frac{11}{159651} a^{8} - \frac{260}{53217} a^{7} + \frac{5912}{159651} a^{6} + \frac{443}{106434} a^{5} + \frac{335}{3942} a^{4} + \frac{625}{1314} a^{3} + \frac{1493}{3942} a^{2} + \frac{176}{657} a + \frac{23}{146}$, $\frac{1}{2873718} a^{13} + \frac{1}{1436859} a^{12} - \frac{17}{2873718} a^{11} - \frac{32}{1436859} a^{10} - \frac{11}{1436859} a^{9} - \frac{98}{478953} a^{8} - \frac{12799}{1436859} a^{7} + \frac{6923}{957906} a^{6} + \frac{2843}{35478} a^{5} - \frac{421}{11826} a^{4} - \frac{15487}{35478} a^{3} + \frac{2300}{5913} a^{2} + \frac{323}{1314} a + \frac{1}{73}$, $\frac{1}{121187561778} a^{14} - \frac{5150}{60593780889} a^{13} - \frac{133157}{121187561778} a^{12} - \frac{350135}{60593780889} a^{11} + \frac{2615905}{60593780889} a^{10} - \frac{1941352}{20197926963} a^{9} - \frac{7773886}{60593780889} a^{8} - \frac{187724693}{13465284642} a^{7} - \frac{516734509}{13465284642} a^{6} - \frac{34802549}{1496142738} a^{5} + \frac{2946485}{1496142738} a^{4} + \frac{1562452}{27706347} a^{3} - \frac{20755625}{166238082} a^{2} + \frac{1165760}{9235449} a + \frac{310624}{1026161}$, $\frac{1}{10127591350082033823995260715932509181219406162058} a^{15} - \frac{8403131876578808492063898965378090648}{5063795675041016911997630357966254590609703081029} a^{14} - \frac{368131957691985979434598972179551405504545}{5063795675041016911997630357966254590609703081029} a^{13} - \frac{2041743321003946007743804129159104100949726}{5063795675041016911997630357966254590609703081029} a^{12} + \frac{38816589958416990443717062730912510541975125}{10127591350082033823995260715932509181219406162058} a^{11} + \frac{3208820685536655375310601556303428696029441}{41169070528788755382094555755823208053737423423} a^{10} + \frac{11137505358398356710112684294553822772297308}{69367064041657765917775758328304857405612370973} a^{9} - \frac{21376409818993961694473562284511182556959573}{1125287927786892647110584523992501020135489573562} a^{8} + \frac{9348368023137023396979536547102713363254729697}{1125287927786892647110584523992501020135489573562} a^{7} - \frac{3226432224324804481720612408063626769518972056}{62515995988160702617254695777361167785304976309} a^{6} - \frac{3009001595006449709968861291552906490760097592}{62515995988160702617254695777361167785304976309} a^{5} + \frac{489760704702772583261919969682341744481118641}{4630814517641533527204051539063790206318887134} a^{4} + \frac{3261558550852927134007977763702262840769244649}{6946221776462300290806077308595685309478330701} a^{3} - \frac{81640901005331092122299567014429231737795406}{257267473202307418178002863281321678128827063} a^{2} + \frac{79923749139466004885182091213017388202847817}{171511648801538278785335242187547785419218042} a + \frac{56625503755338224230229911774235636341808}{1058713881490977029539106433256467811229741}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6911046034430000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), \(\Q(\sqrt{2701}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{37}, \sqrt{73})\), 8.8.388282220975269366201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.2 | $x^{8} - 1825$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |