Normalized defining polynomial
\( x^{16} - 2 x^{15} - 701 x^{14} - 628 x^{13} + 252311 x^{12} + 661327 x^{11} - 85402450 x^{10} + 456652722 x^{9} + 9389893780 x^{8} - 95757847887 x^{7} + 53744166666 x^{6} - 1698734028116 x^{5} + 51666615448253 x^{4} - 246602526605672 x^{3} - 165474707995824 x^{2} + 3450107191595130 x - 6139708248207609 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1099877147396767625299704166328746389549375427801=37^{14}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1005.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{999} a^{12} + \frac{88}{999} a^{11} + \frac{19}{999} a^{10} + \frac{142}{999} a^{9} + \frac{10}{999} a^{8} + \frac{3}{37} a^{7} - \frac{230}{999} a^{6} + \frac{131}{999} a^{5} - \frac{236}{999} a^{4} + \frac{125}{999} a^{3} - \frac{32}{999} a^{2} - \frac{11}{37} a - \frac{40}{111}$, $\frac{1}{2997} a^{13} - \frac{1}{2997} a^{12} - \frac{487}{2997} a^{11} + \frac{116}{2997} a^{10} - \frac{307}{2997} a^{9} - \frac{476}{2997} a^{8} - \frac{446}{2997} a^{7} - \frac{5}{333} a^{6} + \frac{253}{999} a^{5} - \frac{394}{999} a^{4} + \frac{499}{999} a^{3} - \frac{1445}{2997} a^{2} + \frac{11}{333} a + \frac{119}{333}$, $\frac{1}{122877} a^{14} + \frac{28}{122877} a^{12} - \frac{18899}{122877} a^{11} - \frac{8369}{122877} a^{10} + \frac{2518}{40959} a^{9} + \frac{79}{2997} a^{8} - \frac{653}{122877} a^{7} - \frac{16678}{40959} a^{6} - \frac{14239}{40959} a^{5} - \frac{12182}{40959} a^{4} + \frac{11605}{122877} a^{3} - \frac{16859}{122877} a^{2} + \frac{529}{13653} a - \frac{4870}{13653}$, $\frac{1}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{15} + \frac{210162620806495275476300852864758992389750313622046643727271930746311671248191046816330903345}{315443757546501006818474191090970801929182882244421882051488909208776861785287794553502988717212399} a^{14} - \frac{40527783491278950052301559756099129410461070314279979293261887633948592003813703278453837759481}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{13} + \frac{329583918229293968978125178241714022616172526498034102697472334958021851059129803409240188872320}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{12} + \frac{124847371296965561268824277683746485897643966478587632852160813453671250217705345696104337477326432}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{11} + \frac{44200315587811722341694411202864630982515371796726476988823973723220188484269709255006926993236185}{315443757546501006818474191090970801929182882244421882051488909208776861785287794553502988717212399} a^{10} + \frac{100804584686354625507501608009638307731860839402983001634530778008271541562448273195583164823337330}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{9} - \frac{14097527063626378081014111752120589438909284355179069804686778413502042657255404035601460190032711}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{8} + \frac{48894538050581385923958302519643470714292908407100905403564625028947247592708633721021465111779066}{315443757546501006818474191090970801929182882244421882051488909208776861785287794553502988717212399} a^{7} - \frac{5582636784671810797075696723214161306180509641551552443159037594658858296001085610041224005565786}{35049306394055667424274910121218977992131431360491320227943212134308540198365310505944776524134711} a^{6} - \frac{38230665387644184155376449626231426915248604461570491157867069911427241535045839997743547618532584}{105147919182167002272824730363656933976394294081473960683829636402925620595095931517834329572404133} a^{5} + \frac{451755841616488882251864754268489123285402657047060004346861334680160148195518767994717469641271599}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{4} - \frac{252724902381369875822000327114086466539265185235013849578241904047321502121091609462624314239915175}{946331272639503020455422573272912405787548646733265646154466727626330585355863383660508966151637197} a^{3} - \frac{155547854457266560520347009306839315351377724157709787211901189033218539816087112958854167185990546}{315443757546501006818474191090970801929182882244421882051488909208776861785287794553502988717212399} a^{2} + \frac{6801096791708648273327453724541793899189185840886677020920503681984416609756458757677175145457187}{105147919182167002272824730363656933976394294081473960683829636402925620595095931517834329572404133} a - \frac{433893585268786998058518634453000834965868621996618122520099581989019693357655559437558717805575}{35049306394055667424274910121218977992131431360491320227943212134308540198365310505944776524134711}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6913299719910000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{2701}) \), \(\Q(\sqrt{37}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{37}, \sqrt{73})\), 8.8.388282220975269366201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 37.8.7.1 | $x^{8} - 37$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $73$ | 73.8.7.2 | $x^{8} - 1825$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.4 | $x^{8} - 1140625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |