Normalized defining polynomial
\( x^{16} - 16 x^{14} + 154 x^{12} - 184 x^{11} - 710 x^{10} + 1512 x^{9} + 1241 x^{8} - 4656 x^{7} + 1626 x^{6} + 4268 x^{5} - 4713 x^{4} + 904 x^{3} + 1192 x^{2} - 748 x + 127 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1096183208251673695748096=2^{32}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1607} a^{14} + \frac{150}{1607} a^{13} - \frac{125}{1607} a^{12} - \frac{46}{1607} a^{11} + \frac{701}{1607} a^{10} + \frac{796}{1607} a^{9} + \frac{704}{1607} a^{8} - \frac{528}{1607} a^{7} - \frac{224}{1607} a^{6} - \frac{539}{1607} a^{5} + \frac{278}{1607} a^{4} - \frac{265}{1607} a^{3} + \frac{208}{1607} a^{2} + \frac{453}{1607} a - \frac{549}{1607}$, $\frac{1}{672489603467809231661} a^{15} - \frac{160075173212932332}{672489603467809231661} a^{14} + \frac{1290771491389904277}{23189296671303766609} a^{13} - \frac{781580954524264481}{23189296671303766609} a^{12} - \frac{128378565844043671403}{672489603467809231661} a^{11} - \frac{129637019044739402606}{672489603467809231661} a^{10} + \frac{253647149057724886239}{672489603467809231661} a^{9} + \frac{13796463935362818196}{672489603467809231661} a^{8} - \frac{189549361139181045418}{672489603467809231661} a^{7} + \frac{122838455634866047559}{672489603467809231661} a^{6} - \frac{87500035832448113859}{672489603467809231661} a^{5} - \frac{328145407092877382524}{672489603467809231661} a^{4} + \frac{238261286786837832878}{672489603467809231661} a^{3} + \frac{44672996965921113292}{672489603467809231661} a^{2} + \frac{38223132086608312059}{672489603467809231661} a - \frac{50454301414554611255}{672489603467809231661}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2363912.21481 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 73728 |
| The 83 conjugacy class representatives for t16n1870 are not computed |
| Character table for t16n1870 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 8.4.2372079616.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.12.24.314 | $x^{12} + 14 x^{10} - 4 x^{9} + 4 x^{8} + 16 x^{7} - 4 x^{6} + 16 x^{5} - 12 x^{4} - 8 x^{2} + 16 x - 8$ | $4$ | $3$ | $24$ | $C_2^2 \times A_4$ | $[2, 2, 2, 3]^{3}$ | |
| 761 | Data not computed | ||||||